Research News×

News

Sexual reproduction may have never become possible if organisms hadn’t evolved a way to restrain the immune system during fertilization, according to a new study from the lab of Sagi Shapira, PhD, assistant professor of systems biology.

The study, published today in Immunity, took an in-depth look at how vertebrate eggs are fertilized.

To fight invading pathogens, all organisms (including vertebrate cells) are programmed to detect and attack any DNA and foreign RNA found outside of the nucleus in the cell’s cytoplasm. It’s usually a safe bet that any DNA found in the cytoplasm is from a foreign microbe, because the cell’s own DNA is safely sequestered in the nucleus. But during fertilization, DNA and RNA from sperm may be briefly exposed to the cytoplasm of an egg—and to the danger of being recognized and attacked.

For fertilization to succeed, Dr. Shapira reasoned that something must prevent the immune system from attacking DNA during fertilization and searched for candidates in the genome.

The search revealed a gene called NLRP14, which encodes a protein that Dr. Shapira’s laboratory demonstrated to play a role in the innate immune system. Without NLRP14, the immune system induces a strong inflammatory response to DNA and RNA found in the cytoplasm, and the fertilization process comes to a halt.

Regulators of mesenchymal GBM subtype

An example of tumor oncotecture. Transcription factors involved in the activation of mesenchymal glioblastoma subtype are shown in purple. Together, they comprise a tightly knit tumor checkpoint, controlling 74% of the genes in the mesenchymal signature of high-grade glioma. CEBP (both β and δ subunits) and STAT3 regulate the other three transcription factors in the tumour checkpoint, synergistically regulating the state of mesenchymal GBM cells. (Image: Nature Reviews Cancer)

In a detailed Perspective article published in Nature Reviews Cancer, Department of Systems Biology chair Andrea Califano and research scientist Mariano Alvarez (DarwinHealth) summarize more than a decade of work to propose the existence of a universal, tumor independent “oncotecture” that consistently defines cancer at the molecular level. Their findings, they argue, indicate that identifying and targeting highly conserved, essential proteins called master regulators — instead of the widely diverse genetic and epigenetic alterations that initiate cancer and have been the focus of much cancer research — could offer an effective way to classify and treat disease.

As coverage of the paper in The Economist reports:

ONE of the most important medical insights of recent decades is that cancers are triggered by genetic mutations. Cashing that insight in clinically, to improve treatments, has, however, been hard. A recent study of 2,600 patients at the M.D. Anderson Cancer Centre in Houston, Texas, showed that genetic analysis permitted only 6.4% of those suffering to be paired with a drug aimed specifically at the mutation deemed responsible. The reason is that there are only a few common cancer-triggering mutations, and drugs to deal with them. Other triggering mutations are numerous, but rare—so rare that no treatment is known nor, given the economics of drug discovery, is one likely to be sought. 

Facts such as these have led many cancer biologists to question how useful the gene-led approach to understanding and treating cancer actually is. And some have gone further than mere questioning. One such is Andrea Califano of Columbia University, in New York. He observes that, regardless of the triggering mutation, the pattern of gene expression—and associated protein activity—that sustains a tumour is, for a given type of cancer, almost identical from patient to patient. That insight provides the starting-point for a different approach to looking for targets for drug development. In principle, it should be simpler to interfere with the small number of proteins that direct a cancer cell’s behaviour than with the myriad ways in which that cancer can be triggered in the first place. (Read full article.)

PrePPI inputs
PrePPI predicts the likelihood that two proteins A and B are capable of interacting based on their similarities to other proteins that are known to interact. This requires integrating structural data (green) as well as other kinds of information (blue), such as evidence of protein co-activity in other species as well as involvement in similar cellular functions. PrePPI now offers a searchable database of unprecedented scope, constituting a virtual interactome of all proteins in human cells. (Image courtesy of eLife.) 

The molecular machinery within every living cell includes enormous numbers of components functioning at many different levels. Features like genome sequence, gene expression, proteomic profiles, and chromatin state are all critical in this complex system, but studying a single level is often not enough to explain why cells behave the way they do. For this reason, systems biology strives to integrate different types of data, developing holistic models that more comprehensively describe networks of interactions that give rise to biological traits. 

Although the concept of an interaction network can seem abstract, at its foundation each interaction is a physical event that takes place when two proteins encounter one another, bind, and cause a change that affects a cell’s activity. In order for this to take place, however, they need to have compatible shapes and physical properties. Being able to predict the entire universe of possible pairwise protein-protein interactions could therefore be immensely valuable to systems biology, as it could both offer a framework for interpreting the feasibility of interactions proposed by other methods and potentially reveal unique features of networks that other approaches might miss. 

In a 2012 paper in Nature, scientists in the laboratory of Barry Honig first presented a landmark algorithm and database they call PrePPI (Predicting Protein-Protein Interactions). At the time, PrePPI used a novel computational strategy that deploys concepts from structural biology to predict approximately 300,000 protein-protein interactions, a dramatic increase in the number of available interactions when compared with experimentally generated resources.

Since then, the Honig Lab has been working hard to improve PrePPI’s scope and usefulness. In a paper recently published in eLife they now report on some impressive developments. With enhancements to their algorithm and the incorporation several new types of data into its analysis, the PrePPI database now contains more than 1.35 million predictions of protein-protein interactions, covering about 85% of the entire human proteome. This makes it the largest resource of its kind. In parallel with these improvements, the investigators have also begun to apply PrePPI in new ways, using the information it contains to provide new kinds of insights into the organization and function of protein interaction networks.

Cell Types in Autism

By inventing a new computational pipeline called DAMAGES, Chaolin Zhang and Yufeng Shen showed that brain cell types on the left of the plot are more prone to have rare autism risk mutations than cell types at the right. Narrowing the focus to these types of cells also helped to identify a molecular signature of the disorder that involves haploinsufficiency. Figure: Human Mutation.

Autism, a spectrum of neurodevelopmental disorders typically identified during early childhood, is widely thought to be the result of genetic alterations that change how the growing brain is wired. Nevertheless, despite a substantial effort in the field of autism genetics, the specific alterations that place one child at greater risk than another remain elusive. Although the list of alterations associated with autism is growing, it has been difficult to conclusively distinguish those that truly increase disease risk from those that are merely coincident with it. One troubling reason for this is that research so far seems to indicate that specific genetic abnormalities associated with autism risk are extremely rare, with many being found only in single patients. This has made it hard to reproduce findings conclusively.

In a paper recently published in the journal Human Mutation, Department of Systems Biology faculty members Chaolin Zhang and Yufeng Shen describe a method and some new findings that could help to more precisely identify rare autism-driving alterations. A new analytical pipeline they call DAMAGES (Disease Associated Mutation Analysis using Gene Expression Signatures) uses a unique approach to identifying autism risk genes, looking at differences in gene expression among different cell types in the brain in order to focus more specifically on mechanisms that are likely to be relevant for autism. Using this approach, they identified a pronounced molecular signature that is shared by disease risk genes due to haploinsufficiency, a type of genetic alteration that causes a dramatic drop in the expression of a particular protein.

Peter Sims & Jinzhou Yuan

Assistant Professor Peter Sims and postdoctoral research scientist Jinzhou Yuan displaying their platform for automated single cell RNA-Seq. Photo: Lynn Saville.

RNA sequencing (RNA-Seq) has become a workhorse technology for research in systems biology. Unlike genome sequencing, which reveals a sample’s DNA blueprint, RNA-Seq catalogs the constantly changing transcriptome; that is, it itemizes and quantifies the complete set of messenger RNA transcripts that are present in cells at a specific time and under specific conditions. In this way, RNA-Seq makes it possible to investigate how the information encoded in the genome is functionally transformed into observable traits, and provides valuable data for defining and comparing different biological states.

Conventional RNA-Seq generates an average summary of mRNA abundance across all of the cells in a sample. Recent research, however, has created a demand for higher resolution technologies capable of generating mRNA profiles at the level of single cells. In cancer biology, for example, there is an increasingly acute awareness that gene expression in the cells that make up malignant tumors is highly heterogeneous. This suggests that in order to understand how the cells work together to drive a tumor’s cancerous behavior, scientists need better methods for characterizing the entire ecology of cells of which it is made. Being able to quantify differences in gene expression cell by cell could be one valuable way to explore such complex environments and understand how they sustain malignancy.

Although several single cell RNA-seq technologies have been unveiled in the past two years, they are expensive to operate and are not optimized to produce data on the scale that is required for systems biology research, particularly in tissue specimens with limited numbers of cells. In a new paper just published in the journal Scientific Reports, however, researchers in the laboratory of Department of Systems Biology Assistant Professor Peter Sims describe a novel approach that offers several important advantages over other existing methods.

The new, automated platform builds on previous innovations in the Sims Lab to offer a cheap, efficient, and reliable way to simultaneously measure gene expression in thousands of individual cells from a single tissue sample. Using custom designed microwell plates, microfluidics, temperature control systems, and software, the technology captures, tags, and generates a readout of the complete transcriptome in each cell, providing robust data that can then be analyzed to distinguish functional diversity among the cells in the sample. Already, the technology is playing a key role in several research projects being conducted in the Department of Systems Biology and promises to become even more powerful as the field of single cell genomics continues to evolve.

Yufeng Shen
Yufeng Shen's lab is interested in developing better computational methods for identifying rare genetic variants that increase disease risk.

On the surface, birth defects and cancer might not seem to have much in common. For some time, however, scientists have observed increased cancer risk among patients with certain developmental syndromes. One well-known example is seen in children with Noonan syndrome, who have an eightfold increased risk of developing leukemia. Recently, researchers studying the genetics of autism also observed mutations in PTEN, an important tumor suppressor gene. Although such findings have been largely isolated and anecdotal, they raise the tantalizing question of whether cancer and developmental disorders might be fundamentally linked.

According to a paper recently published in the journal Human Mutation, many of these similarities might not be just coincidental, but the result of shared genetic mutations. The study, led by Yufeng Shen, an Assistant Professor in the Columbia University Departments of Systems Biology and Biomedical Informatics, together with Wendy Chung, Kennedy Family Associate Professor of Pediatrics at Columbia University Medical Center, found that cancer-driving genes also make up more than a third of the risk genes for developmental disorders. Moreover, many of these genes appear to function through similar modes of action. The scientists suggest that this could make tumors “natural laboratories” for pinpointing and predicting the damaging effects of rare genetic alterations that cause developmental disorders.

“In comparison with cancer, there are relatively few patients with developmental disorders,” Shen explains, “For geneticists, this makes it hard to identify the risk genes solely based on statistical evidence of mutations from these patients. This study indicates that we should be able to use what we learn from cancer genetics — where much more data are available — to help in the interpretation of genetic data in developmental disorders.”

Factors affecting protein activity
Following gene transcription and translation, a protein can undergo a variety of modifications that affect its activity. By analyzing downstream gene expression patterns in single tumors, VIPER can account for these changes to identify proteins that are critical to cancer cell survival.

In a paper just published in Nature Genetics, the laboratory of Andrea Califano introduces what it describes as the first method capable of analyzing a single tumor biopsy to systematically identify proteins that drive cancerous activity in individual patients. Based on knowledge gained by modeling networks of molecular interactions in the cell, their computational algorithm, called VIPER (Virtual Inference of Protein activity by Enriched Regulon analysis), offers a unique new strategy for understanding how cancer cells survive and for identifying personalized cancer therapeutics.

Developed by Mariano Alvarez as a research scientist in the Califano laboratory, VIPER has become one of the cornerstones of Columbia University’s precision medicine initiative. Its effectiveness in cancer diagnosis and treatment planning is currently being tested in a series of N-of-1 clinical trials, which analyze the unique molecular characteristics of individual patients’ tumors to identify drugs and drug combinations that will be most effective for them. If successful, it could soon become an important component of cancer care at Columbia University Medical Center.

According to Dr. Califano, “VIPER makes it possible to find actionable proteins in 100% of cancer patients, independent of their genetic mutations. It also enables us to track tumors as they progress or relapse to determine the most appropriate therapeutic approach at different points in the evolution of disease. So far, this method is looking extremely promising, and we are excited about its potential benefits in finding novel therapeutic strategies to treat cancer patients.”

Clonal evolution in GBM tumors
The researchers' model of tumor evolution indicates that different clonal lineages branch from a common ancestral cell and then diversify, independently causing aggressive tumor behavior at different stages of disease.

Glioblastoma multiforme (GBM) is the most common and most aggressive type of primary brain tumor in adults. Existing treatments against the disease are very limited in their effectiveness, meaning that in most patients tumors recur within a year. Once GBM returns, no beneficial therapeutics currently exist and prognosis is generally very poor.

To better understand how GBM evades treatment, an international team led by Antonio Iavarone and Raul Rabadan at the Columbia University Center for Topology of Cancer Evolution and Heterogeneity has been studying how the cellular composition of GBM tumors changes over the course of therapy. In a paper just published online by Nature Genetics, they provide the first sketch of the main routes of GBM tumor evolution during treatment, showing that different cellular clones within a tumor become dominant within specific tumor states. The study uncovers important general principles of tumor evolution, novel genetic markers of disease progression, and new potential therapeutic targets.

Andrew Anzalone and Sakellarios ZairisMD/PhD students Andrew Anzalone and Sakellarios Zairis combined approaches based in chemical biology, synthetic biology, and computational biology to develop a new method for protein engineering.

The ribosome is a reliable machine in the cell, precisely translating the nucleotide code carried by messenger RNAs (mRNAs) into the polypeptide chains that form proteins. But although the ribosome typically reads this code with uncanny accuracy, translation has some unusual quirks. One is a phenomenon called -1 programmed ribosomal frameshifting (-1 PRF), in which the ribosome begins reading an mRNA one nucleotide before it should. This hiccup bumps translation “out of frame,” creating a different sequence of three-nucleotide-long codons. In essence, -1 PRF thus gives a single gene the unexpected ability to code for two completely different proteins.

Recently Andrew Anzalone, an MD/PhD student in the laboratory of Virginia Cornish, set out to explore whether he could take advantage of -1 PRF to engineer cells capable of producing alternate proteins. Together with Sakellarios Zairis, another MD/PhD student in the Columbia University Department of Systems Biology, the two developed a pipeline for identifying RNA motifs capable of producing this effect, as well as a method for rationally designing -1 PRF “switches.” These switches, made up of carefully tuned strands of RNA bound to ligand-sensing aptamers, can react to the presence of a specific small molecule and reliably modulate the ratio in the production of two distinct proteins from a single mRNA. The technology, they anticipate, could offer a variety of exciting new applications for synthetic biology. A paper describing their approach and findings has been published in Nature Methods.

cQTLs modify TF binding

Cofactors work with transcription factors (TFs) to enable efficient transcription of a TF's target gene. The Bussemaker Lab showed that genetic alterations in the cofactor gene (cQTLs) change the nature of this interaction, affecting the connectivity between the TF and its target gene. This, combined with other factors called aQTLs that affect the availability of the TF in the nucleus, can lead to downstream changes in gene expression.

When different people receive the same drug, they often respond to it in different ways — what is highly effective in one patient can often have no benefit or even cause dangerous side effects in another. From the perspective of systems biology, this is because variants in a person’s genetic code lead to differences in the networks of genes, RNA, transcription factors (TFs), and other proteins that implement the drug’s effects inside the cell. These multilayered networks are much too complex to observe directly, and so systems biologists have been developing computational methods to infer how subtle differences in the genome sequence produce these effects. Ultimately, the hope is that this knowledge could improve scientists’ ability to identify drugs that would be most effective in specific patients, an approach called precision medicine.

In a paper published in the Proceedings of the National Academy of Sciences, a team of Columbia University researchers led by Harmen Bussemaker proposes a novel approach for discovering some critical components of this molecular machinery. Using statistical methods to analyze biological data in a new way, the researchers identified genetic alterations they call connectivity quantitative trait loci (cQTLs), a class of variants in transcription cofactors that affect the connections between specific TFs and their gene targets.

Nicholas Tatonetti
Nicholas Tatonetti is an assistant professor in the Department of Biomedical Informatics and Department of Systems Biology.

A team of Columbia University Medical Center (CUMC) scientists led by Nicholas Tatonetti has identified several drug combinations that may lead to a potentially fatal type of heart arrhythmia known as torsades de pointes (TdP). The key to the discovery was a new bioinformatics pipeline called DIPULSE (Drug Interaction Prediction Using Latent Signals and EHRs), which builds on previous methods Tatonetti developed for identifying drug-drug interactions (DDIs) in observational data sets. The results are reported in a new paper in the journal Drug Safety and are covered in a detailed multimedia feature published by the Chicago Tribune.

The algorithm mined data contained in the US FDA Adverse Event Reporting System (FAERS) to identify latent signals of DDIs that cause QT interval prolongation, a disturbance in the electrical cycle that coordinates the heartbeat. It then validated these predictions by looking for their signatures in electrocardiogram results contained in a large collection of electronic health records at Columbia. Interestingly, the drugs the investigators identified do not cause the condition on their own, but only when taken in specific combinations.

Previously, no reliable methods existed for identifying these kinds of combinations. Although the findings are preliminary, the retrospective confirmation of many of DIPULSE’s predictions in actual patient data suggests its effectiveness, and the investigators plan to test them experimentally in the near future.

Yaniv Erlich
Yaniv Erlich. Photo: Jared Leeds.

A new article published online in Nature Genetics reports that short tandem repeats, a class of genetic alterations in which short motifs of nucleotide base pairs occur multiple times in a row, play a role in modulating gene expression. Leading the study was Yaniv Erlich, an assistant professor in the Columbia University Department of Computer Science and core member of the New York Genome Center who recently joined the Center for Computational Biology and Bioinformatics.

As an article in Columbia Engineering explains, the findings reveal a new class of genome regulation.

Breast cancer cells

A histological slide of cancerous breast tissue. The pink "riverways" are normal connective tissue while areas stained blue are cancer cells. (Source: National Cancer Institute)

Investigators at Columbia University Medical Center and the Icahn School of Medicine at Mount Sinai have discovered a molecular signaling mechanism that drives a specific type of highly aggressive breast cancer. As reported in a paper in Genes & Development, a team led by Jose Silva and Andrea Califano determined that the gene STAT3 is a master regulator of breast tumors lacking hormone receptors but testing positive for human epidermal growth receptor 2 (HR-/HER2+). The researchers also characterized a pathway including IL-6, JAK2, STAT3, and S100A8/9 — genes already known to play important roles within the immune response — as being essential for the survival of HR-/HER2+ cancer cells. Additional tests showed that disrupting this pathway severely limits the ability of these cells to survive.

These findings are particularly exciting because the pathway the researchers identified contains multiple targets for which known FDA-approved drugs exist. The paper reports that when these drugs were tested in disease models, the cancer cells showed a dramatic response, suggesting promising strategies for the treatment of the HR-/HER2+ cancer subtype. A clinical trial is now underway to investigate the effects of these approaches in humans.

DeMAND graphical abstract
By analyzing drug-induced changes in disease-specific patterns of gene expression, a new algorithm called DeMAND identifies the genes involved in implementing a drug's effects. The method could help predict undesirable off-target interactions, suggest ways of regulating a drug's activity, and identify novel therapeutic uses for FDA-approved drugs, three critical challenges in drug development.

Researchers in the Columbia University Department of Systems Biology have developed an efficient and accurate method for determining a drug’s mechanism of action — the cellular machinery through which it produces its pharmacological effect. Considering that most drugs, including widely used ones, act in ways that are not completely understood at the molecular level, this accomplishment addresses a key challenge to drug development. The new approach also holds great potential for improving drugs’ effectiveness, identifying better combination therapies, and avoiding dangerous drug-induced side effects.

According to Andrea Califano, the Clyde and Helen Wu Professor of Chemical Systems Biology and co-senior author on the study, “This new methodology makes it possible for the first time to generate a genome-wide footprint of the proteins that are responsible for implementing or modulating the activity of a drug. The accuracy of the method has been the most surprising result, with up to 80% of the identified proteins confirmed by experimental assays.”

PhenoGraph

PhenoGraph, a new algorithm developed in Dana Pe'er's laboratory, proved capable of accurately identifying AML stem cells, reducing high-dimensional single cell mass cytometry data to an interpretable two-dimensional graph. Image courtesy of Dana Pe'er.

A key problem that has emerged from recent cancer research has been how to deal with the enormous heterogeneity found among the millions of cells that make up an individual tumor. Scientists now know that not all tumor cells are the same, even within an individual, and that these cells diversify into subpopulations, each of which has unique properties, or phenotypes. Of particular interest are cancer stem cells, which are typically resistant to existing cancer therapies and lead to relapse and recurrence of cancer following treatment. Finding better ways to distinguish and characterize cancer stem cells from other subpopulations of cancer cells has therefore become an important goal, for once these cells are identified, their vulnerabilities could be studied with the aim of developing better, long lasting cancer therapies.

In a paper just published online in Cell, investigators in the laboratories of Columbia University’s Dana Pe’er and Stanford University’s Garry Nolan describe a new method that takes an important step toward addressing this challenge. As Dr. Pe’er explains, “Biology has come to a point where we suddenly realize there are many more cell types than we ever imagined possible. In this paper, we have created an algorithm that can very robustly identify such subpopulations in a completely automatic and unsupervised way, based purely on high-dimensional single-cell data. This new method makes it possible to discover many new cell subpopulations that we have never seen before.”

Monthly disease risk

Columbia scientists used electronic records of 1.7 million New York City patients to map the statistical relationship between birth month and disease incidence. Image courtesy of Nicholas Tatonetti.

Columbia University Medical Center reports on a new study in the Journal of American Medical Informatics Association led by Nicholas Tatonetti, also an assistant professor in the Department of Systems Biology.

Reposted from the Columbia University Medical Center Newsroom. Find the original article here .

Cancer bottlenecks
In an N-of-1 study, researchers at Columbia University use techniques from systems biology to analyze genomic information from an individual patient’s tumor. The goal is to identify key genes, called master regulators  (green circles), which, while not mutated, are nonetheless necessary for the survival of cancer cells. 

Columbia University Medical Center (CUMC) researchers are developing a new approach to cancer clinical trials, in which therapies are designed and tested one patient at a time. The patient’s tumor is “reverse engineered” to determine its unique genetic characteristics and to identify existing U.S. Food and Drug Administration (FDA)-approved drugs that may target them.

Rather than focusing on the usual mutated genes, only a very small number of which can be used to guide successful therapeutic strategies, the method analyzes the regulatory logic of the cell to identify genes and gene pairs that are critical for the survival of the tumor but are not critical for normal cells. FDA-approved drugs that inhibit these genes are then tested in a mouse model of the patient’s tumor and, if successful, considered as potential therapeutic agents for the patient — a journey from bedside to bench and back again that takes about six to nine months.

“We are taking a rather different approach to tailor therapy to the individual cancer patient,” said principal investigator Andrea Califano, PhD, Clyde and Helen Wu Professor of Chemical Systems Biology and chair of CUMC’s new Department of Systems Biology. “If we have learned one thing about this disease, it’s that it has tremendous heterogeneity both across patients and within individual patients. When we expect different patients with the same tumor subtype or different cells within the same tumor to respond the same way to a treatment, we make a huge simplification. Yet this is how clinical studies are currently conducted. To address this problem, we are trying to understand how tumors are regulated one at a time. Eventually, we hope to be able to treat patients not on an individual basis, but based on common vulnerabilities of the cancer cellular machinery, of which genetic mutations are only indirect evidence. Genetic alterations are clearly responsible for tumorigenesis but control points in molecular networks may be better therapeutic targets.”

Tracking clones

After identifying T cell clones that react against donated kidney tissue in vitro, new computational methods developed in Yufeng Shen's Lab are used to track their frequency following organ transplant. The findings can help to predict transplant rejection or tolerance.

When a patient receives a kidney transplant, a battle often ensues. In many cases, the recipient’s immune system identifies the transplanted kidney as a foreign invader and mounts an aggressive T cell response to eliminate it, leading to a variety of destructive side effects. To minimize complications, many transplant recipients receive drugs that suppress the immune response. These have their own consequences, however, as they can lead to increased risk of infections. For these reasons, scientists have been working to gain a better understanding of the biological mechanisms that determine transplant tolerance and rejection. This knowledge could potentially improve physicians’ ability to predict the viability of an organ transplant and to provide the best approach to immunosuppression therapy based on individual patients’ immune system profiles.

Yufeng Shen, an assistant professor in the Columbia University Department of Systems Biology and JP Sulzberger Columbia Genome Center, together with Megan Sykes, director of the Columbia Center for Translational Immunology at the Columbia University College of Physicians and Surgeons, recently took an encouraging step toward this goal. In a paper published in Science Translational Medicine, they report that the deletion of specific donor-resistant T cell clones in the transplant recipient can support tolerance of a new kidney. Critical to this discovery was the development of a new computational genomics approach by the Shen Lab, which makes it possible to track how frequently rare T cell clones develop and how their frequencies change following transplantation. The paper suggests both a general strategy for understanding the causes of transplant rejection and a means of identifying biomarkers for predicting how well a transplant recipient will tolerate a new kidney.

Comorbidity between Mendelian disease and cancer
Researchers in the Rabadan Lab have found that comorbidity between Mendelian diseases and cancer may result from shared genetic factors.

Genetic diseases can arise in a variety of ways. Mendelian disorders, for example, occur when specific mutations in single genes — called germline mutations — are inherited from either of one’s two parents. Well-known examples of Mendelian diseases include cystic fibrosis, sickle cell disease, and Duchenne muscular dystrophy. Other genetic diseases, including cancer, result from somatic mutations, which occur in individual cells during a person’s lifetime. Because the genetic origins of Mendelian diseases and cancer are so different, they are typically understood to be distinct phenomena. However, scientists in the Columbia University Department of Systems Biology have found evidence that there might be interesting genetic connections between them. 

In a paper just published in Nature Communications, postdoctoral research scientist Rachel Melamed and colleagues in the laboratory of Associate Professor Raul Rabadan report on a new method that uses knowledge about Mendelian diseases to suggest mutations involved in cancer. The study takes advantage of an enormous collection of electronic health records representing over 110 million patients, a substantial percentage of US residents. The authors show that clinical co-occurrence of Mendelian diseases and cancer, known as comorbidity, can be tied to genetic changes that play roles in both diseases. The paper also identifies several specific relationships between Mendelian diseases and the cancers melanoma and glioblastoma.

ALK-negative ALCL mutation map
A map of mutations observed in ALK-negative anaplastic large cell lymphoma. (Credit: Dr. Rabadan)

The following article is reposted with permission from the Columbia University Medical Center Newsroom. Find the original here.

The first-ever systematic study of the genomes of patients with ALK-negative anaplastic large cell lymphoma (ALCL), a particularly aggressive form of non-Hodgkin’s lymphoma (NHL), shows that many cases of the disease are driven by alterations in the JAK/STAT3 cell signaling pathway. The study also demonstrates, in mice implanted with human-derived ALCL tumors, that the disease can be inhibited by compounds that target this pathway, raising hopes that more effective treatments might soon be developed. The study, led by researchers at Columbia University Medical Center (CUMC) and Weill Cornell Medical College, was published today in the online edition of Cancer Cell.

Pages