News

Wang Lab
Ravi Sheth (left) and Harris Wang, PhD

Dr. Harris Wang , PhD, and systems biology graduate student, Ravi Sheth , have been awarded a new grant from the Bill and Melinda Gates Foundation to help advance a global health project aimed at reducing childhood mortality in sub-Saharan Africa. The project incorporates Dr. Wang’s innovative microbiome research techniques and applies them to study the antibiotic, Azithromycin, towards understanding its role as an intervention for improving childhood survival rates in rural low-income, low-resource settings.

The study supported by the Gates grant expands on breakthrough research conducted in the MORDOR study , a cluster-randomized trial in which communities in Malawi, Niger and Tanzania were assigned to four twice-yearly mass distributions of either oral Azithromycin or placebo. Children, as young as 12 months of age, participated, and results indicated that the all-cause mortality rate was significantly lower for communities receiving the antibiotic versus placebo. 

“This is an extremely exciting and, in many ways, very surprising result for such an underserved population,” says Sheth, who is a fourth-year PhD student in the systems biology track at Columbia University Irving Medical Center (CUIMC) . “Now it is crucial to understand how Azithromycin is acting to increase survival in such a profound way – to aid scale-up of the intervention and to help optimize the treatment regime and minimize any unintended consequences.” 

The researchers will focus on developing a mechanistic understanding of how Azithromycin reshapes the gut microbiome, and how this altered microbiome state affects the host. The effect of the antibiotic will be studied over space and time to understand the perturbation to the gut ecosystem and resulting community re-configuration and re-assembly, and this information will be utilized to predict and test optimal dosing strategies. 

Peter Sims, PhD
Peter Sims, PhD

The Mark Foundation for Cancer Research has awarded Peter Sims , PhD, an Emerging Leader Award and will support his work to advance a novel use of single-cell RNA sequencing to develop brain cancer treatments. Dr. Sims, assistant professor of systems biology at Columbia University Irving Medical Center, is one of just eight recipients of the inaugural grant, given to promising early career scientists for projects aimed at substantially unmet needs in cancer risk prediction, prevention, detection and treatment. 

Dr. Sims is an early contributor to the emerging field of large-scale single-cell RNA sequencing, which has made it possible to analyze tens of thousands of cells while simultaneously obtaining imaging and genomic data from each individual cell. He will be using this approach to improve patient-derived models of glioblastoma multiforme (GBM), an aggressive form of cancer that invades the brain, making complete resection difficult. In other words, making it extremely difficult in surgery to remove all cancerous cells from the brain. To date, drug therapies for this type of aggressive brain cancer have had limited success, partly because of the heterogeneity of these tumors. Furthermore,  current patient-derived models for researching glioblastoma do not fully recapitulate the cellular diversity of tumor cells that are present in the tumor, so it is extremely challenging to classify those cells in order to match them with the drug therapies that work. 

Indeed, there is a critical need to better characterize and understand GBM. Dr. Sims has collaborated with several brain tumor experts in the Herbert Irving Comprehensive Cancer Center , including Drs. Peter Canoll, Jeffrey Bruce, Antonio Iavarone and Anna Lasorella to advance single-cell genomic approaches to characterizing this disease. Approaching this problem at the single cell level could result in development of novel treatments that  prioritize and identify the specific drug therapies that may actually work on diminishing these tumor cells. The ultimate goal is to attain better predictions of therapeutic efficacy. 

Researchers at the Vagelos College of Physician & Surgeons are rewriting the course of scientific investigation, intent on speeding up the process of discovery that will help patients with cancer, Alzheimer’s disease, diabetes, and other intractable diagnoses.

In cancer, Andrea Califano, Dr, the Clyde and Helen Wu Professor of Chemical and Systems Biology and chair of the Department of Systems Biology, decided to turn cancer treatment theory on its head. The first wave of research in pursuit of personalized oncology focused on clues embedded within individual tumors. Decode the nucleic acids gone awry within the DNA of a particular patient’s cancer, or so the thinking goes, to identify treatments tailored to target that specific mutation.

It’s a fine theory, says Dr. Califano in the article, but investigators still have a lot of work to do before the vast majority of cancers yield to that approach. “Only maybe 25 percent of patients have a mutation that could be defined as actionable,” he says.

For more than a decade, Dr. Califano has championed what might be considered an end run around cancer mutations, focusing instead on identifying and blocking the networks of normal proteins—known as master regulators—hijacked by deranged DNA to spur tumor formation and sustain tumor growth. Prevent the signals those proteins send on behalf of a cancerous mutation, and the cancer itself screeches to a halt.

 

Cory Abate-Shen
Cory Abate-Shen, PhD

Cory Abate-Shen , PhD, who is known for her leading work in the development of innovative mouse models for translational research in prostate and bladder cancers, has been elected a fellow of the American Association for the Advancement of Science (AAAS) . The AAAS is honoring Dr. Abate-Shen for her work in mouse models to better understand how basic cellular mechanisms are co-opted in cancer and for her contributions to the field of cancer biology. 

She joins a class of 416 new fellows, including two additional Columbia University faculty members, Drs. Richard Axel and Upmanu Lall, who also were elected today to the prestigious group. 

Dr. Abate-Shen, the Michael and Stella Chernow Professor of Urologic Sciences at Columbia University Irving Medical Center (CUIMC) , holds joint appointments in the Departments of Systems Biology , Medicine and Pathology & Cell Biology , and is a member and former interim director of the Herbert Irving Comprehensive Cancer Center (HICCC) . An internationally recognized leader in genitourinary malignancies, Dr. Abate-Shen is particularly interested in advancing our understanding of the mechanisms and modeling of prostate and bladder tumors. An innovator in the generation of novel mouse models for these cancers, her work has led to the discovery of new biomarkers for early detection, as well as key advances in cancer prevention and treatment. Dr. Abate-Shen has been the recipient of numerous awards, including a Sinsheimer Scholar Award, an NSF Young Investigator Award, a Bladder Cancer Advocacy Network Innovator Award and the Women in Cell Biology Junior Award from the American Society for Cell Biology. Currently, she is an American Cancer Society Research Professor, the first to be awarded at CUIMC. 

Yufeng Shen Episcore

The epigenomic profile of RBFOX2, a haploinsufficient gene recently identified as a risk gene of congenital heart disease. Each small box represents 100 bp region around transcription start sites (TSSs) and the shade of the color reflect the strength of the histone mark signal in tissues under normal conditions. RBFOX2 has large expansion of active histone marks (H3K4me3 and H3K9ac), especially in heart and epithelial tissues (purple and gray rows), and tissue-specific suppression mark (H3K27me3) in blood samples.(Credit: Shen lab)

The genetics of developmental disorders, such as congenital heart disease and autism, are highly complex. There are roughly 500 to 1,000 risk genes that can lead to each of these diseases, and to date, only about a few dozen have been identified. Scientists have ramped up efforts to develop computational approaches to address challenges in accurately identifying genetic risk factors in ongoing genetic studies, and the availability of such tools would greatly assist researchers in gaining a deeper understanding of the root causes of these diseases. 

Focusing on haploinsufficiency, a key biological mechanism of genetic risk in developmental disorders, Yufeng Shen , PhD, and his lab have developed a novel computational method that enables researchers to find new risk genes in these diseases. Their key idea is that the expression of haploinsufficient genes must be precisely regulated during normal development, and such regulation can be manifested in distinct patterns of genomic regulatory elements. Using data from the NIH Roadmap Epigenomics Project, they showed there is a strong correlation of certain histone marks and known haploinsufficient genes. Then based on supervised machine learning algorithms, they developed a new method, which they call Episcore , to predict haploinsufficiency from epigenomic data representing a broad range of tissue and cell types. Finally, they demonstrate the utility of Episcore in identification of novel risk variants in studies of congenital heart disease and intellectual disability.