News

Dr. Harris Wang of Systems Biology
Dr. Harris Wang is lead PI on a new DARPA-funded project developing novel therapies to counter effects of high-dose ionizing radiation.

Harris Wang, PhD, assistant professor of systems biology at Columbia University Irving Medical Center , is leading a team of experts in radiation research, CRISPR-Cas technologies, and drug delivery on an innovative new project announced June 27 funded by the Defense Advanced Research Projects Agency (DARPA) . The up to $9.5M project focuses on pursuing a therapy to protect the body from the effects of high-dose ionizing radiation, and is part of DARPA's initiative to fund research into new strategies to combat public health and national security threats.

In humans, acute radiation syndrome primarily affects stem cells in the blood and gut, yet existing treatments only help to regenerate blood cells, and only with limited effect. There is no possibility for prophylactic administration of these drugs, and most must be delivered immediately following radiation exposure to provide any benefit. There are no existing medical countermeasures for radiation damage to the gut.

The Columbia team aims to develop an orally delivered programmable gene modulator therapeutic. The multimodal treatment the team envisions would take hold in both the gut and liver, triggering protection and regeneration of intestinal cells, while also inducing liver cells to produce protective cues that trigger the regeneration of blood cells in bone marrow.

Columbia investigators win Chan Zuckerberg Initiative grants to accelerate development of cellular roadmap of the human body.

In two groundbreaking research projects contributing to the Human Cell Atlas, Columbia University scientists are tasked with mapping complete cells in the immune system and the human spine. The global effort is aiming to identify and define every cell type of the human body and create a collection of maps for navigating the cellular basis of human health and disease.

Peter Sims, PhD
Peter Sims, PhD, assistant professor of systems biology

The Columbia teams, which include co-principal investigators from the Department of Systems Biology Drs. Peter Sims and Raul Rabadan , are among the 38 collaborative science teams launching the Chan Zuckerberg Initiative’s (CZI) Seed Networks for the Human Cell Atlas project announced today. The three-year projects, receiving a total of $68 million in award funding by Seed Networks, are collaborative groups that are bringing together expertise in science, computational biology, software engineering, and medicine to support the ongoing progress of the Human Cell Atlas .

Investigating the Immune System + Aging

Dr. Sims, part of an international team including close collaborator Dr. Donna Farber of the Department of Surgery , is combining single-cell sequencing technologies, data analysis, and immunology expertise to better understand how the immune system ages and gain new insights into how human diseases occur. 

Chaolin Zhang
Chaolin Zhang, PhD, associate professor of systems biology

A new study by researchers in Dr. Chaolin Zhang’s lab at Columbia’s Department of Systems Biology details a novel computational method that models how RNA-binding proteins (RBPs) recognize specific sites in the target RNA transcripts, precisely and accurately. The researchers’ findings include identification of entirely new motifs (RNA sequence patterns), and their research in complex RNA regulation contributes to our understanding of the molecular basis of disease and conditions, and down the road, could aid in the development of targeted therapies. 

The study, led by Dr. Zhang, associate professor of systems biology, with senior co-authors Suying Bao, PhD, and Huijuan Feng, PhD, appears today in Molecular Cell

RNA has traditionally been considered mere “messengers” that transfer genetic information from DNA to proteins that ultimately carry out cellular functions. However, it is now increasingly appreciated that RNA can be tightly regulated to control gene expression and diversity protein products. RNA-binding proteins (RBPs) are at the center of such regulation, with important roles in many cellular processes, including cell function, transport, and location. Gaining mechanistic insights of the binding specificity of RBPs in a genome-wide scale helps advance our knowledge of gene regulation.

“RNA-binding proteins are crucial for gene expression,” says Dr. Feng, coauthor of the study and post-doctoral research scientist in the Zhang lab. “RNA is heavily regulated, and when this regulation goes wrong, instabilities or disease could occur.”  

Dr. Andrea Califano sits down with BioTechniques at AACR. Video: Courtesy of BioTechniques.

At the 2019 annual meeting of the American Association for Cancer Research (AACR), Dr. Andrea Califano sat down with BioTechniques News for an overview on the field of systems biology and its impact in cancer research and in precision medicine. Dr. Califano is a pioneering researcher in the fast-growing field of systems biology whose expertise is in developing innovative, systematic approaches to identify the molecular factors that lead to cancer progression and to the emergence of drug resistance at the single-cell level. A physicist by training, Dr. Califano is the Clyde and Helen Wu Professor of Chemical and Systems Biology, founding chair of the Department of Systems Biology at Columbia University Irving Medical Center, director of the Columbia Genome Center and a program leader at the Herbert Irving Comprehensive Cancer Center.

The video interview is part of the series, Behind the Technqiue by BioTechniques News. 

Oxytricha

New research by Laura Landweber, PhD, who has joint appointments in the Department of Biochemistry and Molecular Biophysics, the Department of Systems Biology and the Department of Biological Sciences at Columbia University, is being featured by Columbia Univeristy Iriving Medical Center Newsroom.

As reported, a new study of a single-celled eukaryote with 16,000 tiny chromosomes may shed light on a recently discovered feature of the human genome.

Methyladenine, or 6mA—a modification of DNA common in Oxytricha trifallax—has only recently been found in multicellular organisms, with some studies suggesting a role in human disease and development.

Finding the enzymes that lay down the methyl marks will be critical to understanding what 6mA is doing in Oxytricha and other organisms, but the enzymes have been difficult to identify.

The new research—to be published in the June 13 issue of Cell—reveals how 6mA marks are made to the Oxytricha genome and suggests why the enzymes have been hard to find.

Read more about the Oxytricha genome and the Landweber lab’s new insights into 6mA and its potential role in human diseases.

Dr. Landweber has been studying Oxytricha for two decades and previously uncovered its 16,000 chromosomes. (See related Faculty Q+A and video.)