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Welcome to the first edition of the Columbia MAGNet Center 

newsletter. The Center for the Multiscale Analysis of Genetic 

and cellular Networks is one of the seven National Center for 

Biomedical Computing (NCBC) funded by the NIH Roadmap. 

Our main goal, in collaboration with the other NCBCs, to create 

the very fabric of a national biomedical computing infrastructure, 

providing innovative computational methodology and tools to 

help molecular biology move into the 21st century. As Physics, 

Chemistry, and Economics,  just to name a few disciplines, have 

evolved from a completely empirical model to one where the 

interplay between theory and experimentation is much more 

balanced, we envisage the future of Biology and Medicine to be 

eventually located at the boundary between the computational 

and the experimental sciences. This emerging integrative model 

is intimately ref lected in the structure of the NCBCs’ scientific 

programs and educational initiatives. An important goal, for 

instance, is to create a new breed of researchers trained in 

both experimental and computational biology. These will be 

complemented by a vast and integrated array of tools that will 

support their research. In the opening article of this first issue,  

Dr. Daniel Gallahan, MAGNet program director, supports this 

view by presenting a unique NIH perspective of why computation 

is not just important, but is in fact essential to biomedical research. 

Dr. Gallahan also summarizes the rationale for the creation of the 

National Centers for Biomedical Computing.

While the NCBCs are highly integrated and complementary, 

each one maintains its own identity and is markedly distinct 

from the others. This is one of the significant strengths of this 

program. It allows centers to collaborate, rather than compete 

with each other, while covering an extraordinary range of inter-

related activities at the intersection of computation, Biology, 

and Medicine. MAGNet, specifically, addresses the increasingly 

important issue of how one may systematically map the molecular 

interactions underlying inter- and intra-cellular processes within 

different organisms and cellular phenotypes, using a variety of 

clues including structural and functional ones. Furthermore, it 

investigates how these interaction models can be leveraged to 

dissect normal and disease related processes, laying the path to 

new biomedical knowledge and discovery.

To illustrate these broad goals, we feature two articles that span 

the complete spectrum of activities within MAGNet, providing 

a glimpse of the true multiscale nature of the problems we are 

tackling. In the first article, Drs. Califano and Dalla Favera 

discuss how high-throughput biological data and information 

theory can go hand in hand to help identify key proteins that 

change the cell regulatory logic at the post-translational level 

in human B cells. These proteins, including those in signaling 

and proteolytic pathways, are involved in lymphomagenesis and 

tumor progression. Additionally, many of them can be targeted by 

drugs thus allowing a more rational approach to the development 

of cancer therapies.  In the second article, Drs. Shapiro and 

Honig discuss how minute changes in affinity between different 

cadherins may produce macroscopic effects by providing cells 

with exquisitely specific adhesion properties, affecting normal 

and pathologic processes. The ultimate goal of this project is 

to understand the molecular basis of specificity, affecting an 

extraordinarily large range of cellular processes. 

Finally, a variety of small featured news articles will provide 

samples of activities within MAGNet as well as key pointers on 

how to access the MAGNet tools and infrastructure through the 

geWorkbench platform for integrative biomedical research. 

- Andrea Califano, Ph.D.

INTRODUCTION
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Over the past several years there has been a revolution in 

biomedical research, not only in the way research is conducted, 

but also in the way it is supported.  While much progress has 

been made in the treatment and understanding of disease, it 

is becoming clear that in order to continue making important 

advances we will have to begin to investigate and decode the 

complexities associated with the disease process using holistic/

systems level approaches while applying new insights by taking 

into account the specific genetic and environmental context of 

the individual patient.

Current reductionist approaches have provided technological 

and scientific advances and have helped set the stage for a new 

systematic approach in medical research.  Starting with genomics, 

there has been an integration of high-throughput technologies 

(including microarrays, proteomics, new molecular and cellular 

imaging) into mainstream biology.  The inf lux of large amounts 

of data and the associated management and analysis needs have 

naturally created a fertile ground for the application of methods 

from computational and mathematical sciences.  As a result, 

we see today in many institutions diverse disciplines being 

increasingly integrated into all aspects of biomedical research.  

The promise is that many of the approaches, technologies, and 

thinking, previously separate from the traditional biomedical 

community, will now lend their strengths to many of these 

complex problems.

This change in investigational methodology has paralleled 

changes in the administration and funding of biomedical science.  

Beginning in May 2002, the National Institutes of Health (NIH), 

under the leadership of Elias A. Zerhouni, M.D., convened a 

series of meetings to chart a “roadmap” for medical research in 

the 21st century.  The purpose was to identify major opportunities 

and gaps in biomedical research that no single institute at NIH 

could tackle alone but that the agency as a whole must address 

to make the biggest impact on the progress of medical research.  

Many of these efforts targeted some of the key challenges faced 

in deciphering disease complexity, along with opportunities for 

new discoveries.  NIH is uniquely positioned to catalyze changes 

that must be made to transform our new scientific knowledge into 

tangible benefits for people.  Developed with input from meetings 

with more than 300 nationally recognized leaders in academia, 

industry, government, and the public, the NIH Roadmap (http://

nihroadmap.nih.gov/) provides a framework of the priorities 

that NIH, as a whole, must address in order to optimize its entire 

research portfolio.  It lays out a vision for a more efficient and 

productive system of medical research.

The initial NIH Roadmap identified the most compelling 

opportunities in three main areas: (1) new pathways to discovery, 

(2) research teams of the future, and (3) re-engineering the 

clinical research enterprise.  One of the most ambitious visions 

to come out of the roadmap process was a program to expand 

the computational infrastructure and software tools needed to 

advance biomedical, behavioral and clinical research.  At the 

core of this effort are seven National Centers for Biomedical 

Computing (NCBC, http://www.bisti.nih.gov/ncbc/).  The 

National Centers for the Multi-Scale Analysis of Genetic and 

Cellular Networks (MAGNet) is one of those centers.  The 

centers, each funded at nearly $20 million over five years, are 

NATIONAL CENTERS FOR BIOMEDICAL 
COMPUTING AND RELATED ACTIVITIES 
AT NIH
DAN GALLAHAN, PHD
DEPUTY DIRECTOR, DIVISION OF CANCER BIOLOGY, 
NATIONAL CANCER INSTITUTE
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part of a coordinated effort to build the computational framework 

and resources that researchers need to gather and analyze the 

massive amounts of biomedical data currently being generated 

by labs and clinics.  This infrastructure will help the research 

community translate their data into knowledge that ultimately 

improves human health.  Centers are dynamic partnerships 

of various research disciplines including computer scientists, 

biologists, engineers, and clinicians.  To maintain the focus of the 

centers on current problems in biomedical research, each center 

has identified biological projects to drive the computational 

efforts and solidify multi-disciplinary teams.  To further expand 

the impact of these centers the NIH has established roadmap 

related programs for Collaborations with the National Centers 

for Biomedical Computing (PAR-07-249 and PAR-07-250).  These 

announcements invite applications from investigators to work 

on projects that broaden a center’s biological or computational 

strengths.  In their brief history, the NCBCs have established 

themselves as leading centers of research in bio-computing as 

well as a national resource for the greater research community.

While the NCBC initiative, as a roadmap activity, is a trans-

NIH program, many individual institutes have also recognized 

and invested in the area of systems and computational biology.  

The National Cancer Institute (NCI), through the Integrative 

Cancer Biology Program (ICBP, http://icbp.nci.nih.gov/) has 

recently established a number of national centers to focus these 

efforts in the area of cancer biology.  The NCI currently funds 9 

ICBP centers focused on various aspects of cancer biology.  Like 

the NCBCs, the center teams are composed of researchers with 

diverse scientific backgrounds.  The goal of the ICBP is to use 

computational and experimental techniques to develop and apply 

predictive computational models describing various transforming 

processes of cancer.  These models will prove essential in our 

eventual understanding and management of this disease, as 

well as in applications of personalized treatment.  The ICBP 

has already established promising approaches for predicting 

signaling pathways, as well for 3-D tumor modeling.  Critical 

to the success of both the ICBP and the NCBC programs is the 

establishment of a strong educational and outreach effort. This is 

not only important for the dissemination of the information and 

models; it is also critical for the training and education of young 

researchers in this emerging field.

MAGNet and the other NCBCs along with specific programs 

such as the ICBP, bring the needed resources and approaches 

to help understand and manage some of our most complex and 

deadliest diseases.  These efforts will help enable the NIH 

and the biomedical community to sustain its historic record of 

making cutting-edge contributions that are central to extending 

the quality of healthy life for people in this country and around 

the world.

E. Zerhouni, Medicine. The NIH Roadmap. 2003, Science.;302(5642):63-72

Morris RW, Bean CA, Farber GK, Gallahan D, Jakobsson E, Liu Y, Lyster PM, Peng GC, Roberts FS, Twery M, Whitmarsh J, Skinner K. 
Digital biology: an emerging and promising discipline. Biotechnol. 2005 Mar;23(3):113-7.

Stilwell JL, Guan Y, Neve RM, Gray JW. 2007. Systems biology in cancer research: genomics to cellomics. Methods Mol 
Biol.;356:353-65. 

Hornberg JJ, Bruggeman FJ, Westerhoff HV, Lankelma J., 2006. Cancer: a Systems Biology disease. Biosystems. Feb-Mar;83 (2-
3):81-90.

1.

2.

3.

4.

“This infrastructure will help the 
research community translate their 
data into knowledge that ultimately 

improves human health.”
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Technical advances that enable monitoring the concentration of 

vast numbers of messenger RNAs, using microarray expression 

profiles, have greatly improved our ability to dissect the cell’s 

regulatory networks. While these approaches have been used 

mostly to dissect transcriptional networks in prokaryotes, 

such as E. coli (Gardner et al. 2003; Faith et al. 2007), or in 

lower eukaryotes, such as yeast (Segal et al. 2003), MAGNet 

investigators have recently introduced new information 

theoretic methods (AR ACNE) to study these networks in 

human cells (Basso et al. 2005; Margolin et al. 2006; Margolin 

et al. 2006). Transcriptional interactions predicted by AR ACNE 

have been biochemically validated in vivo, using Chromatin 

Immunoprecipitation assays, first for MYC and BCL6 targets in 

Human B cells and more recently for several other transcription 

factors (TFs) in a variety of additional cellular contexts. These 

include the validation of: MYC and Notch1 targets in T cells 

(Palomero et al. 2006), CREB targets in peripheral leucocytes, 

STAT3, BHLHB2, RUNX1, CEBPB, and FOSL2 targets in 

glioblastoma cells, and PBX19 targets in rat brain tissue 

(manuscripts in preparation). In all these cases, biochemical 

validation was successful in 70% to 90% of the tests, showing that 

computational inference methods are approaching the accuracy 

of experimental assays. 

Unfortunately, while providing a wealth of novel information 

on transcription factor candidate targets and a low false positive 

ratio, algorithms like AR ACNE only scratch the surface of the 

complexity of transcriptional regulation processes. There are 

two fundamental reasons for this. First, transcription factors do 

not operate in isolation but rather in concert with many other 

proteins (such as co-factors and chromatin modification enzymes) 

that mediate the efficiency of their binding, the recruitment of 

transcriptional and repression complexes, and the accessibility 

of the chromatin molecule (among others). Second, the activity 

of transcription factors is itself regulated by signal transduction 

events leading to the activation or degradation of transcription 

factors and their complexes. This is achieved through a variety of 

well-characterized post-translational modification events such as 

phosphorylation, acetylation, sumoylation, ubiquitination, etc. 

One way to think “visually” about such processes is to assemble 

a graph where nodes represent genes or their byproducts and 

arrows between nodes represent their physical interactions. 

In such a representation, the direct regulation of a target 

gene (e.g., TERT) by a transcription factor (e.g., MYC), as 

MAPPING THE TRANSCRIPTION 
FACTOR MODULATOR REPERTOIRE 
IN HUMAN B LYMPHOCYTES
ANDREA CALIFANO, PHD   RICCARDO DALLA-FAVERA, MD
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Fig. 1: Examples of graphical interaction network representations showing 

direct and modulated transcriptional interactions.
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inferred by AR ACNE, would be represented as a linear chain of 

individual physical interactions leading from the MYC mRNA to 

the TERT mRNA, see Fig. 1. This diagram provides a generic 

indication that the more MYC is expressed in the cell, the more 

TERT is likely to be expressed as well. When more complex 

interactions are considered, however, such as those involving 

post-translational modifications or complex formation, one must 

introduce additional nodes representing new transient or stable 

molecular species such as the phosphorylated version of a TF or 

a TF complex formed by two or more proteins.  There are many 

proteins that affect the ability of MYC to regulate TERT, for 

instance, either specifically or non-specifically. An active kinase 

(such as GSK3), which destabilizes MYC by phosphorylation 

at Thr-58, will induce rapid degradation of the protein, thus 

reducing the gene’s ability to regulate the expression of its 

targets, including TERT (Gregory et al. 2000). Conversely, as 

shown by the reporter gene assay in Fig. 2, the availability of the 

MEF2B co-factor will significantly increase the ability of MYC to 

activate TERT and a few other targets specifically, while leaving 

the majority of other MYC targets unaffected (Wang et al. 2007). 

The bottom half of Fig. 1 represents these more complex three-

way interactions by introducing a new molecular species (i.e., 

either the phosphorylated version of MYC or the MYC-MEF2B 

complex).

Interestingly, while many algorithms are currently available 

to infer transcriptional targets of a TF, no algorithm has been 

proposed to systematically identify all the proteins that affect the 

ability of a TF to regulate some or all of its targets using gene 

expression profile (GEP) data. To some extent, the key obstacle to 

the development of such methods is relatively easy to understand. 

Since GEP data provides a snapshot, albeit a comprehensive 

one, of the mRNA in the cell, it is difficult to believe that it may 

provide evidence about interactions that occur exclusively at the 

post-translational (i.e., protein) level, such as the formation of TF 

complexes or a TF activation by phosphorylation.

This is precisely where the interdisciplinary background 

of MAGNet investigators is helpful. While most of the 

regulation of signaling proteins happens via signals, rather 

than transcriptionally, cell samples show some variability of 

the proteins at the mRNA level. For a biologist, the natural 

f luctuations of a specific gene’s mRNA across individual cells 

and populations are a form of experimental noise, which hides 

the underlying biological information. If this sample-related 

variability could be reduced – the biologist would argue – cellular 

processes would be so much easier to dissect. However – a 

physicist would rebut, – as long as the natural sample variability is 

larger than the measurement error one should not be considered 

it as noise but rather as a physiologic (or pathologic) process that 

can be used to measure specific systems properties. Specifically, 

biological “noise” can be turned into signal if a sufficient number 

of samples are collected. In that case, if the cell is close to 

equilibrium or involved in dynamics that are slow compared to 

signaling processes, f luctuations in the expression of a gene 

across many samples can be used as a proxy for f luctuation in 

the corresponding protein availability. Furthermore, assuming 

that cellular signals are statistically independent of their 

substrate availability, a reasonable starting hypothesis, mRNA 

concentration data can then be used effectively to investigate 

post translational processes. 

MINDY (Modulator Analysis by Network Dynamics) uses 

these principles to detect proteins that affect the transcriptional 

program of a TF, i.e., TF modulators. This can be best understood 

with an example: suppose that a kinase, K
s
, activated by a signal 

S, is required to activate a TF in turn and to allow it to regulate 

its target(s) t. Then, a transcriptional f luctuation of the kinase 

mRNA, K
m

, should result in a corresponding f luctuation in the 

amount of K
s
 and thus in the amount of active TF. Under this 

assumption, the Califano lab has shown that the conditional 

mutual information I[ TF; t | K
m
] becomes a non-constant 

function of K
m

. This can be efficiently assessed by showing that 

ΔI = |I [TF; t | K
m

+] - I [TF; t | K
m

- ]|, the absolute difference of 

the mutual information computed from the samples where K
m

 is 

most expressed (K
m

+) and from those where it is least expressed 

Fig. 2: TERT-luciferase assay results from T239 transfected T cells. 
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(K
m

-), is greater than zero. This test is a necessary and sufficient 

one if the dependency of the conditional information on K
m

 is 

monotonic, which can be easily shown to be the case for realistic 

biochemical interactions.

Suppose for instance, as an extreme case, that K
m

 is completely 

absent from the cell (K
m

-). Then, even if the signal S were 

present, the TF could never become active and thus I [ TF ; t | K
m
 

] = 0, because the TF cannot regulate any of its targets, including 

t. On the other hand, if the kinase were present in abundance 

(K
m

+), any amount of signal S would find a sufficient K substrate 

to activate the kinase, which would in turn activate the TF and 

lead to target regulation. Under this condition the marginal 

information I [ TF ; t | K
m

+] > 0, because changes in TF would 

correlate with changes in target expression. Thus, trivially, ΔI 

> 0. As the kinase availability range becomes narrower, as is 

the case in natural sample variability, the corresponding ΔI 

would also decrease. However, if we assume that the signal S 

is independent of the kinase availability (a reasonable starting 

hypothesis), then no matter how narrow the natural variability 

in kinase concentration range is, there will always exist a data 

sample size at which the corresponding change in information 

becomes statistically significant. Interestingly, as discussed 

later, even relatively modest sample sizes (N > 200), such as are 

available in today’s GEP repositories can provide some valuable 

insight into the cell’s post-translational interactions.

Hence, MINDY requires computing the difference in mutual 

information between the TF and a target t in two subpopulations, 

one where the candidate modulator gene m (our kinase, for 

Table 1: Results of the MINDY analysis for MYC. Column 1 shows the modulator gene symbol; column 2 shows the number of affected MYC interactions; columns 

3 and 4 show respectively the number of interactions that become more correlated with MYC when there is respectively an increased or decreased amount of the 

modulator gene; column 5 is inferred from 3 and 4 and indicates the modulation mode (+ = MYC activator, - = MYC antagonist); column 6 is a gene description and 

column 7 shows literature clues about MYC modulation. Blue genes are previously known in the literature to affect MYC function. Green genes were experimentally 

validated in the Califano/Dalla Favera lab.

Modulator M# M+ M- Mode Description Evidence

CSNK2A1 205 205 0 + Casein kinase 2, alpha 1 HPRD
PPAP2B 120 0 120 - Phosphatidic acid phosphatase 2B Acitvates GSK3
HCK 118 0 118 - Hemopoietic cell kinase BCR Pathway
SAT 109 0 109 - Spermidine N1-acetyltransferase
DUSP2 95 0 95 - Dual specificityphophatase 2 Desphosphorylates ERK2
MAP4K4 94 0 94 - MAP kinase kinase kinase kinase 4 BCR Pathway
PPM1A 92 0 92 - Proteinphosphatase 1A
CSNK1D 90 0 90 - Casein kinase 1, delta
GCAT 86 86 0 + Glycine C-acetyltransferase
TRIO 84 0 84 - Triple functional domain
PRKCI 63 63 0 + Proteinkinase C, iota BCR Pathway
PRKACB 57 0 57 - Proteinkinase, catalytic, beta BCR Pathway
STE38 56 56 0 + Serine/theronine kinase 38
MTMR6 55 2 53 - Myotubularin related protein 6
NEK9 53 53 0 + NIMA-related kinase 9
MYST1 47 47 0 + MYST histone acetyltransferase 1
MAPK13 45 45 0 + MAP kinase 13 BCR Pathway
OXSR1 45 0 45 - Oxidative-stressresponsive 1
DUSP4 43 0 43 - Dual specificityphophatase 1
MAP2K3 42 0 42 - MAP kinase kinase 3 BCR Pathway
PPP4R1 39 0 39 - Proteinphosphatase 4, R1
ERK2 37 37 0 + MAP kinase 1 BCR Pathway
MAP4K1 36 0 36 - MAP kinase kinase kinase kinase 1 BCR Pathway
CSNK1E 35 34 1 + Casein kinase 1, epsilon
FYN 33 0 33 - FYN oncogene
NEK7 33 33 0 + NIMA-related kinase 7
CSNK2A2 31 31 0 + Casein kinase 2, alpha Related to CSNK2A1
DUSP5 30 0 30 - Dual specifictiyphosphatase 5
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instance) is least expressed and one where it is most expressed, 

from a relatively large sample set. If the absolute difference is 

deemed statistically significant given the sample size, after 

Bonferroni correction for the number of tests performed, then 

the gene m is considered a putative modulator of the interaction 

between the TF and the target t. Given a putative modulator, 

the test can be performed on each candidate target of the 

TF. These can either be selected among all the genes on the 

microarray expression profile or from a set of known TF targets 

(e.g., from the literature or from AR ACNE). Table 1 shows the 

result of this procedure where MYC is the selected transcription 

factor, candidate modulators are chosen among all kinases, 

phosphatases, and acetyltrasferases on the GEP, and the targets 

of MYC are selected from all ChIP and ChIP-Chip validated MYC 

targets in the MYC target database (Zeller et al. 2003). Only the 

top modulators, affecting 30 or more MYC-target interactions are 

shown.

Remarkably, as shown by columns 3 and 4, even though each set 

is performed in isolation, there is complete consistency across the 

different tests for each putative modulator. For instance, Casein 

Kinase 2 (a protein known to phosphorylate MYC and to stabilize 

the MYC-MAX heterodimer) is found to be the most statistically 

significant MYC modulator, affecting 205 of the ~340 tested MYC 

target interaction. As shown, all such interactions demonstrated 

an increase of mutual information when there was more Casein 

Kinase 2 (see counts in column 3), consistently with the known 

role of this protein. None of the MYC target interactions became 

more correlated (increase in mutual information) when there 

was less Casein Kinase 2 in the cell (see 0 count in column 4). 

The opposite is true for proteins that act as MYC antagonist (e.g. 

PPAP2B) where all the counts are in column 4 rather than 3. This 

behavior is ref lected across all the reported putative modulators, 

showing that the analysis produces biologically plausible results.

Similar results are also obtained for candidate modulators 

that are transcription factors, leading to the dissection of 

combinatorial regulation programs. 

Further extensive biochemical validation of several modulators, 

using co-IP, reporter gene assays,  and modulator silencing by 

siRNA, shows that the method is capable of identifying novel post-

translational modulators of the MYC protein, including signaling 

proteins, such as STK38 and HDAC1, and co-factors such as 

Fig. 3: BHLHB2 analysis. The fi gure shows how MYC appears to regulate its targets in the samples with the lowest concentration of BHLHB2 mRNA, while regulation 

of the same targets appears to be lost in the samples with a substantial amount of BHLHB2 mRNA.
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BHLHB2 and MEF2B. For instance, Figure 3 shows differential 

regulatory ability by MYC in the presence or absence of BHLH2. 

This was confirmed by a TERT-luciferase reporter gene assay, 

showing a decrease in TERT expression as BHLHB2 levels are 

increased in the cell. 

MINDY was run for each signaling and TF protein against 

each TF protein, to dissect both the interface between signal 

transduction and transcriptional regulation as well as the 

combinatorial nature of transcriptional programs. Validation, 

using existing pathways, shows that 30% to 70% of the inferred 

modulators are in the same pathway as the TF they affect, 

depending on the minimum number of affected targets. This 

is providing the first genome-wide and systematic analysis of 

all post-translational modulators of every TF in a B Cell. This 

information can be used both for the identification and validation 

of therapeutic targets, as well as for the dissection of pathways 

that are dysregulated in lymphoid malignancies.



The DREAM
At a microscopic level, organisms are ruled by interacting systems of biomolecules. Historically, scientists painstakingly elucidated chains 
of molecular events using experiments that reveal individual interactions, although they recognized that members of different pathways 
frequently interact. In recent years, researchers have built richer, interconnected networks to mathematically summarize their knowledge 
of these interactions. This systems biology enterprise, largely stimulated by high-throughput tools like microarrays that measure mRNA 
levels as an indicator of gene expression, is a vital and increasingly important activity in both basic biology and in medicine.

A nagging concern, however, is how accurately these networks represent the biology. For complex systems like biological networks, 
there are practical limits on how well even massive amounts of data can uniquely defi ne the underlying structure and yield useful 
predictions of measurable events. Indeed, although its advocates call this process “reverse engineering,” the topology and the detailed 
molecular interactions of the “inferred” networks will likely never be known with precision.

On December 3 and 4, 2007, the New York Academy of Sciences hosted the second meeting of the Dialogue on Reverse-Engineering 
Assessment and Methods (DREAM), which the Academy has nurtured from its inception. (For more information, see the related 
volume of the Annals of the New York Academy of Sciences: Reverse Engineering Biological Networks: Opportunities and Challenges 
in Computational Methods for Pathway Inference.) This ongoing process aims to assess the ability of scientists—and their computer 
servants—to infer networks from experimental data, by comparing their predictions to “gold-standard” networks whose structure is 
thought to be known. The conference also featured plenary and invited talks, as well as contributed talks and posters, illuminating 
various aspects of the reverse-engineering challenge.

Diverse networks
The centerpiece of the second DREAM meeting was a set of fi ve “challenges,” in which participants tried to replicate various types of 
known networks from specifi ed data. The fi ve challenges included identifying targets of the transcriptional repressor BCL6, determining 

continued on next page...

http://www.nyas.org/dream2007
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which proteins of a group interact, and inferring the topology of a variety of networks, including a fi ve-gene synthetic network in 
yeast, several more complex, computer-generated networks, and a documented gene regulatory network in a bacterium.

To ensure a fair comparison of different techniques for reverse engineering networks, the DREAM organizers carefully limited the 
data supplied, and tried to disguise it so that participants could not leverage other kinds of data. This blinded procedure does not 
take advantage of all available information, however, especially biological wisdom that does not fi t easily into a formal mathematical 
framework. Some speakers instead advocated incorporating prior biological knowledge such as known feedback loops into the 
network from the earliest stages of the process. But others felt that, although such information might improve the networks, it would 
compromise the primary DREAM goal of assessing methods.

Determining the most revealing experimental conditions is a crucial issue for reverse engineering. The blinded competition, however, 
demanded that the organizers provide the data, so the competitors could not differentiate themselves by devising perturbations to 
best clarify network features.

Transcriptional regulation—in which proteins produced from mRNA in turn act to modulate the transcription of other genes into 
mRNA—is the poster child of systems biology. Researchers exploit uniform and commercially accessible high-throughput data to 
construct complex transcriptional networks based on simple models of regulation. Nonetheless, recent studies reveal important 
complexities in transcription regulation. In addition, other types of interaction must ultimately be integrated into the description. 
Researchers have made signifi cant progress in elucidating some types of networks, such as signaling networks driven by post-
translational modifi cations of proteins. Other networks, like those governed by metabolic interactions or the various mechanisms 
associated with microRNA, are at an earlier stage of understanding.

Diverse algorithms
The purpose of DREAM is not to produce the best possible network, but to evaluate the best tools for producing networks. The 
choice of tools depends in part on the nature of the available data. Dynamic techniques aim to exploit the detailed time evolution of 
biological responses like mRNA concentration in response to perturbations. The underlying model is generally a system of differential 
equations, and the modeling aims to determine the parameters of these equations.

Many algorithms analyze the correlations between the steady-state levels of biomolecules, such as mRNA, under various conditions. 
These static techniques use statistical methods to try to distinguish the direct interactions between nodes from those mediated by 
other nodes. Their results are generally embodied in the topology of a (possibly directed) graph.

For both static and dynamic models, however, the experimental data are typically insuffi cient to specify a unique network. 
Researchers generally must discard many apparent interactions because their effects are unimportant, but in so doing they may 
also discard some real interactions. Developing metrics that quantify this tradeoff is a subtle and challenging issue, especially for 
biological networks, which are often sparse.

Diverse results
In the end, 36 teams made a total of 110 predictions for the fi ve challenges. The match between these predictions and the “known” 
networks varied widely, both between teams and between challenges. For example, all teams did poorly at identifying the most 
complex in silico network, which was governed by transcriptional, signaling, and metabolic interactions. The networks inferred from 
the data differed signifi cantly from the real network, which is precisely known. What is not known is whether the data given are, by 
themselves, suffi cient to distinguish the networks.

By contrast, many teams did very well at identifying the targets of the transcription suppressor BCL6 from expression and sequence 
data. For this real data, however, the “gold-standard” result is itself derived in the context of a specifi c understanding of the biological 
mechanisms. Although the organizers did additional experiments to validate the results, the team that best predicted the targets 
used hints about the organizers’ thinking process to better tune their predictions. They challenged the organizers to consider that, 
rather than identifying the underlying network, predicting the observable results of experiments may be a more objective way to 
asses reverse engineering.

At this early stage, the DREAM process is still searching for the best ways to fi nd networks, and each challenge has shed some light 
on the the problem.

The DREAM Project
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Cadherins (calcium dependent 

adherent proteins) comprise one of 

the largest families of cell surface 

adhesion proteins.  Their regulated 

expression, in different cells at 

different times during development, 

guides the formation of specific 

multicellular structures.  There are 

about 100 different cadherins in the 

human genome, in five different large 

subfamilies.  The members of each 

subfamily are highly related to one 

another.

In the context of one of the MAGNet 

Center’s driving biological problems, 

our laboratories have come together 

to study cadherins by combining 

physicochemical and computational 

investigations. Our goal is to 

understand the molecular basis of the 

binding specificity of cadherins and, 

in turn, the structural and energetic 

basis of many cell-cell adhesion 

processes. The fundamental question 

we ask is how cadherins are able to 

bind to one another with sufficient 

specificity to accomplish their cell 

recognition function, even though 

many cadherins are closely related 

to one another in sequence, and thus 

might be expected to cross-react.  

In addition, we wish to understand 

the diverse function of different 

cadherins and to see how different 

cadherin subfamilies have evolved 

to carry out distinct, albeit related 

functions.

A classic example of cadherin 

function can be seen in embryonic 

tissue development where cells in the 

neural tube that express N-cadherin 

separate from epithelial cells that 

express E-cadherin (Figure 1). 

This phenomenon can be replicated 

in in-vitro cell assays which show 

that cells transfected with N and E 

cadherin sort out from one another 

E-cadherin

N-cadherin

Fig. 1: The process of neurulation, common to 

all vertebrates, is driven by regulated changes 

in expression of E- and N- cadherins.  This 

micrograph, from Masatoshi Takeichi’s laboratory, 

shows a slice through a 6-day post fertilization 

chick embryo.

E-cadherin  / N-cadherinN-cadherin  / N-cadherin

Fig. 2:  Cell separation mediated by N- and E-

cadherins recapitulated in transfected cells.

BARRY HONIG, PHDLAWERENCE SHARIPO, PHD

UNDERSTANDING CADHERIN SPECIFICITY IN THE
DEVELOPMENT OF MULTICELLULAR STRUCTURES:
A COMBINED EXPERIMENTAL AND COMPUTATIONAL STUDY

DEPARTMENT OF BIOCHEMISTRY AND BIOPHYSICS
COLUMBIA UNIVERSITY

DEPARTMENT OF BIOCHEMISTRY AND BIOPHYSICS
CENTER FOR COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
COLUMBIA UNIVERSITY
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into separate aggregates (Figure 2). 

Cadherin adhesive dimers form through a 

strand-swapping mechanism (Figure 3), a 

specific type of the more general “domain 

swapping” phenomenon (Figure 4). We have 

shown, through a theoretical analysis, that this 

mechanism imparts novel energetic properties 

to cadherins, enabling high specificity while 

maintaining low affinity (Figure 4).  Low-

affinity binding is a requirement for cadherins 

because they function as membrane attached 

“lawns” of proteins that bind cell surfaces 

together.  High affinity interactions would hold 

cells together permanently, and impede the 

dynamics of development.  Low-affinity binding 

is a characteristic of most or all cell adhesion 

proteins.  The domain swapping mechanism may 

prove to be a general mechanism used by other 

families of cell adhesion proteins as well.

In order to address the question of how 

cadherins sort cells into tissue layers, we are 

taking a two-pronged approach.  First, we are 

using surface plasmon resonance – a tool to 

experimentally measure binding strength and 

kinetics – to characterize the binding energies 

of cadherin pairs (Figures 5 and 6).  Second, 

we are developing theoretical models of cell 

sorting, based on the idea, originally proposed 

by Malcolm Steinberg at Princeton, that cell 

aggregates behave as viscous liquids, and the 

equilibrium configuration of cell assemblies 

will depend on interaction energies between 

cells.  These cell-level interaction energies 

are determined by the interaction strength 

and number of adhesion molecules on the cell 

surface.

Results from SPR experiments (Fig. 6) show 

that cadherins bind in the micromolar range:  

N-cadherin homodimerizes with KD ~ 20μM 

and E-cadherin homodomerizes with much 

weaker affinity, about 80 μM.  Very surprisingly, 

we have found that the binding strength of the 

heterophilic E-cadherin/N-cadherin interaction 

is intermediate between these two values.

These data suggest the need to reinterpret 

Fig. 3:  Structural models of C-cadherin. a) The crystal structure of the entire ectodomain 

of C-cadherin, determined in our lab. b) Structure of the EC1 domain dimer from C-

cadherin (stereo diagram). The swapped A strands, including the conserved Trp-2 

side-chain, are shown in yellow and cyan. The putative hinge loop is shown in red. c) A 

homology model of the monomeric form of the C-cadherin EC1 domain based on the 

structure of the E-cadherin monomer (PDB: 1O6S). The A-strand is shown in yellow with 

the Trp-2 side-chain facing the interior of its own protomer.  The hinge loop is shown in 

red.  Dynamic exchange between monomer and dimer is a critical feature of cadherin 

adhesion.

Fig. 4:  Monomer (PDB 1FF5) and dimer (PDB 1L3W) structures of classical cadherin 

EC1 domains, and schematic diagram of domain swapping mechanism.  3D domain 

swapping, in general, requires a protomer consisting of a “main” domain and a 

“swapped” domain connected by a fl exible hinge loop.  In this way, symmetric dimmers 

can be formed simply by changing the conformation of the hinge loop.  All molecular 

contacts between “main” and “swapped” domains are locally identical in the dimer and 

monomer forms, except that they are intramolecular in the monomer, and intermolecular 

in the dimer.  The A-strand, containing Trp2 and shown in yellow, constitutes the 

“swapped” domain for classical cadherins.  Since the A strand can bind to the body of its 

own protomer, classical cadherins effectively carry their own competitive inhibitors, and 

this is critical to their binding specifi city.
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Fig. 5: Experimental design of SPR experiments.  A protein is immobilized on the surface 

of a gold chip.  A protein solution is fl owed over the chip, enabling binding.  The SPR 

angle, t, depends only on the amount of mass bound to the chip surface.  Thus, binding 

interactions are detected as changes in this angle.

Fig. 6:  (A) SPR traces of a concentration series (0.565-60.0 μM) of N-cadherin analyte, 

injected over a neutravidin Biacore chip coated with biotinylated N-cadherin.  SPR at 

a steady-state point (S) are plotted in (B) and fi t to a 1:1 binding model, yielding KD= 

21.8± 1.4 μM.

Fig. 7:  Theoretical modeling predicts the outcome of sorting experiments for cells 

expressing equal levels of either of two cadherins – A (light blue) and B (red).  Three 

different outcomes are predicted, which depend on the Work (WIJ) required to “pull 

our understanding of neurulation – the E-

cadherin and N-cadherin mediated separation 

of the neural tube from the ectoderm (Figure 

1).  Although E-cadherin expressing cells bind 

together and N-cadherin cells bind together, 

it was unexpected to find that the adhesion 

molecules can also interact heterophilically.

A simple theoretical analysis of cell sorting, 

however, clears up this apparent paradox (Fig. 

7), and shows that these binding affinity results 

can beautifully explain the observed cell layer 

separation. 

Just as oil separates from water based on the 

relative homophilic (water-water and oil-oil) 

and heterophilic (oil-water) binding energies, 

cells apparently separate into tissues according 

to similar rules.  For the case in which 

heterophilic binding is intermediate between 

the two homophilic binding energies, for a set of 

bounded “phases”, it is predicted that the high-

affinity cells (corresponding to N-cadherin) will 

form a core enveloped by a phase made from the 

low-affinity cells (corresponding to E-cadherin 

expressors).

These results provide a beginning glimpse into 

the effects of cell adhesion on the mechanics 

of tissue development.  Many tasks remain 

including determination of the binding energies 

for all 19 classical cadherins conserved in 

vertebrate genomes, and mapping these to 

expression patterns at critical developmental 

stages in animals.
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XPLORIGIN: A SOFTWARE FOR 
DECIPHERING POPULATION OF ORIGIN 
DEVELOPED AT THE PE’ER LAB
ITSIK PE’ER LAB
Despite our obsessive interest in humans, they make a poor 

model organism. Their genetics, for example, is complicated 

by generations of sorting into populations and merging them 

together. These violations of standard, statistical assumptions of 

random mating, idealized samples are a major problem in disease 

association studies. Fortunately, the information in genome wide 

arrays that profile an individual’s genetic makeup for disease 

studies also stores clues about origin of an individual’s ancestors. 

Like white light being separated into its constituent spectrum of 

colors, an individual’s genetic variation can be better understood 

when decomposed into the ancestry backgrounds of that 

individual.

The Pe’er lab has recently completed development of Xplorigin 

(http://www.cs.columbia.edu/~itsik/Xplorigin/Xplorigin.htm) a 

software tool to decipher population ancestry of different regions 

along an individual’s genome. This tool was used to analyze 

admixture in the population of Kosrae, Micronesia, in a genome 

wide association study of the Metabolic Syndrome. Xplorigin is 

based on a Generalized Hidden Markov Model, trained on data 

from the International HapMap Project (http://www.hapmap.

org/). Further development of this tool is currently under way to 

allow statistical interpretation of genetic association studies in 

admixed population, taking into account this decomposition into 

ancestral origin population. 

MUTAGENESYS - DIAGNOSTIC 
PREDICTIONS BASED ON GENOTYPE DATA
KENNETH ROSS AND ITSIK PE’ER LABS
MutaGeneSys is a new system developed by Julia Stoyanovich 

in the Ross lab, in joint work with Itsik Pe’er. This system uses 

genome-wide genotype data for disease prediction. MutaGeneSys 

integrates three data sources: the International HapMap project 

(http://www.hapmap.org), whole-genome marker correlation 

data and the Online Mendelian Inheritance in Man (OMIM, 

http://www.ncbi.nlm.nih.gov/sites/entrez?db=omim) database. 

It accepts SNP data of individuals as query input and delivers 

disease susceptibility hypotheses even if the original set of 

typed SNPs is incomplete. The system is scalable and f lexible: 

it operates in real time and produces population, technology, and 

confidence-specific predictions.

MutaGeneSys allows detection of individuals susceptible 

to OMIM disorders among participants of whole genome 

association studies, a yet unexplored perspective of such data. 

This system and its successors will pave the way for using whole 

genome SNP arrays as practical diagnostic tools. The findings of 

MutaGeneSys are currently being incorporated into the HapMap 

Web Browser as the OMIM_Associations track.

You can learn more about the MutaGeneSys Project at:

http://www.cs.columbia.edu/~jds1/MutaGeneSys/

IDENTIFYING GENE-PHENOTYPE 
ASSOCIATIONS IN HUMAN B LYMPHOCYTES
ANDREA CALIFANO LAB
The accurate reconstruction of networks of cellular interactions 

has provided valuable insight into the mechanisms that underlie 

normal and pathogenic processes.  As our knowledge of these 

networks evolves, they can begin to be used as tools to further 

characterize disease on a genome-wide scale.  In particular, we 

can identify how specific changes in the network are related to 

specific cellular phenotypes, and whether these changes can be 

traced back to a specific causal event.

With this context in mind, we have developed a systems biology 

approach to identify gene-phenotype associations in human B 

lymphocytes.  Using a Bayesian evidence integration scheme, we 

have generated a comprehensive network of interactions present 

in B cells, as evidenced from various sources including literature 

mining, reverse engineering algorithm (AR ACNE, MINDY), 

expression profiling, and databases such as BIND, IntAct and 

TransFac.  A unique characteristic of this network is that it is 

hybrid in nature, including protein-protein interactions (PPI), 

protein-DNA or regulatory interactions (PDI), and higher-order 

modulated interactions (MI) in which a transcription factor and a 

target have a relationship dependent upon the expression level of 

a third modulator gene.  The inclusion of all of these interaction 

types allows this B Cell Interactome (BCI) to cover a far greater 

extent of real relationships present within a typical B cell.

The analysis uses the concept that a particular gene, which is 

causally related to a specific phenotype, will show a pattern of 

changes in the network which can be identified by looking at its 

behavior with respect to its interaction partners.  Using a large 

compendium of B Cell expression profiles covering over 20 

normal and malignant phenotypes, we find edges in the BCI that 

show a gain-of-correlation (GOC) or loss-of-correlation (LOC) 
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pattern in a particular phenotype of interest.  In other words, 

these are interactions which appear to be correlated in one 

phenotype but not in any other, and vice-versa; they are identified 

by looking at the change in correlation when a particular 

phenotype is removed.  By grouping these modified interactions 

together, we can see which genes show a high enrichment in 

these changes, indicating they are behaving differently in that 

phenotype.  We can score them as more likely to be a key causal 

gene (e.g. an oncogene in a tumor phenotype) or a key effector of 

the phenotype transition.

Results have shown promise in identifying key causal 

mechanisms.  In 4 phenotypes (1 normal, 3 cancer), this method 

identified the known causal gene in the top 0.3% of all candidate 

genes.  Moreover, the top lists for these phenotypes included 

several genes known to be active in or related to these phenotypes.  

For example, the MYC proto-oncogene was identified as a key 

gene involved in Burkitt Lymphoma (BL), where it is known to 

be translocated from chromosome 8 and aberrantly expressed.  

Also present however was MTA1, which has been shown to be 

necessary for MYC to hold its transforming capability.  What 

makes these findings more interesting is that they would not 

have been identified by simple differential expression analysis in 

3 out of 4 cases, indicating that a comprehensive systems-based 

approach can yield more insight than conventional approaches.

This method is currently being applied to further characterize 

more heterogeneous phenotypes, such as Diffuse Large B-

Cell Lymphoma (DLBCL) and Chronic Lymphocytic Leukemia 

(B-CLL).  We are hopeful that our comprehensive, evidence 

integration approach can be used to identify novel candidate 

genes involved in development of these lymphomas.

PROTEIN DATABASE CREATED USING 
NEW PIPELINE METHOD
BURKHARD ROST LAB
For transmembrane proteins, the presence of the lipid bilayer 

produces an amphipathic environment for individual strands or 

helices, a feature often detectable in amino acid sequences.  To 

quantify this effect, we developed a pipeline that automatically 

identifies all lipid-facing, buried, and water-facing atoms in TM 

proteins, using the lipid bilayer position estimated from the 

Orientations of Proteins in Membranes (OPM, http://opm.phar.

umich.edu/) database.  Further, using our refined definition 

for local helix or strand axis, we annotate each residue with 

the periodic angular position relative to the face of maximal 

lipid exposure for each TM helix or strand.  The resulting 

database consists of 92 TM alpha helical proteins containing 

1465 transmembrane helices (295 sequence-unique), while the 

compilation of TM beta barrels is still underway.  Such a database 

is likely to be useful as training data for diverse sequence-based 

prediction approaches.

IDENTIFYING THE BIOMOLECULAR 
PATHWAYS UNDERLYING SYNAPTIC 
CONNECTIVITY IN NEMATODE C. ELEGANS
DIMITRIS ANASTASSIOU LAB
The nematode C. elegans has a well-defined nervous system with 

only 302 neurons interconnected according to a known wiring 

diagram. If we also know the expression profiles of the individual 

neurons, we are presented with a unique opportunity to link 

the “single-neuron transcriptome” with the wiring diagram, 

identifying genes that are jointly associated with the presence 

of synapses, thus providing valuable help for the solution of 

the important effort of identifying the biomolecular pathways 

underlying synaptic connectivity.

This kind of research is at the heart of MAGNet’s central theme 

(multiscale genomic and cellular networks), because it achieves 

the integration of interactions through two levels of abstraction, 

(a) the intercellular level of the neural interconnection network 

Highlighting Neurons in Nematode C. Elegans: Using technology based 

on fl uorescent proteins, we can see and isolate individual neurons in C. 

elegans - courtesy David Miller
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and (b) the intracellular level of the biomolecular network within 

each of the neurons. 

The single-neuron transcriptome of C. elegans is not yet known. 

We are collaborating with the laboratory of Prof. David Miller 

at Vanderbilt University, who uses pioneering cell-sorting 

and microarray-based technologies to profile mRNA isolated 

from individual neurons, gradually expanding our knowledge. 

Using the limited existing knowledge, we already have some 

preliminary results [1], and we are currently using novel 

computational techniques that we developed [2] to identify sets 

of genes that are synergistically interacting with respect to 

synapse formation. 

[1]  V. Varadan, D. Miller III and D. Anastassiou, 
“Computational Inference of the Molecular Logic for 
Synaptic Connectivity in C. elegans,” Bioinformatics, Vol. 22, 
Issue 14 – ISMB 2006, pp. e497-e506, July 2006.

[2] D. Anastassiou, “Computational Analysis of the Synergy 
among Multiple Interacting Genes” (Review Article), 
Molecular Systems Biology, Vol. 3, No. 83, February 2007.

MAGNET CENTER TOOLS – PULLING 
EVERYTHING TOGETHER
ARIS FLORATOS AND ANDREA CALFANO 
LABS
An important mandate for all the National Centers for Biomedical 

Computing is to develop technologies and mechanisms to 

facilitate the wide dissemination of tools and results  generated 

by the Centers’ research programs. To support this mandate 

MAGNet has developed the genomics Workbench, geWorkbench 

(http://www.geworkbench.org/), a freely available Java 

application that provides access to an integrated suite of 

genomics tools produced by MAGNet investigators as well as by 

external contributors. It is developed on top of an open-source, 

extensible component architecture specifically designed to 

facilitate the rapid development of new modules and to support 

the easy integration of pre-existing tools. By providing a 

framework to integrate the various MAGNet tools and databases, 

geWorkbench serves as the main vehicle for disseminating the 

Center’s scientific and technological production to the research 

community.

At present, geWorkbench integrates over 50 individual 

components, covering a wide range of genomics domains. 

For microarray gene expression analysis, several major file 

formats and chip types are supported. Many filtering and 

normalization options are available and there are links to 

several annotation sources, including Affymetrix annotations, 

caBIO pathways and Gene Ontology terms. Also available are 

algorithms for differential expression analysis, hierarchical 

clustering, self-organizing maps, class prediction, regulatory 

network reconstruction, etc. Sequence support includes BLAST, 

pattern discovery, transcription factor mapping, and syntenic 

region analysis. A wide variety of visualizations modules 

accompany these tools. Additionally, components to support 

protein structure visualization and analysis are under active 

development, leveraging one of the major scientific strengths of 

the Center.

geWorkbench utilizes standards-based middleware grid 

technologies (such as those developed by the caBIG initiative, 

https://cabig.nci.nih.gov/, among others) to provide seamless 

access to remote data, annotation and computational resources 

thus enabling researchers with limited local resources to benefit 

from available public infrastructure which otherwise would have 

been out of their reach or/and would have required a non-trivial 

level of technical know-how in order to utilize.

geWorkbench: Using a component architecture it allows individually 

developed plug-ins to be confi gured into complex bioinformatic 

applications.
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BIOPHYSICAL MODELING OF GENE 
REGULATORY NETWORKS WITH 
MATRIXREDUCE

HARMEN BUSSEMAKER LAB
Many algorithms exist for finding sequence “motifs” in 

nucleotide sequences. The most accurate representation 

of sequence specificity takes the form of a position-weight 

matrix (PWM) or position-specific scoring matrix (PSSM). 

Such matrices model the sequence variability in a collection 

of aligned binding sites for a particular transcription factor. 

Algorithms for discovering weight matrices usually require the 

user to make ad hoc parameter choices, such as how to delineate 

the set of sequences that will be searched, how to define the 

statistical properties of  “random” nucleotide sequences, and how 

to pick a threshold for the weight matrix score when predicting 

binding sites. Barrett Foat, a graduate student in the Department 

of Biological Sciences, and Harmen Bussemaker, one of the 

faculty members of C2B2/MAGNet have developed a weight 

matrix discovery method that avoids these complications. Their 

algorithm, named MatrixREDUCE, uses a biophysical model 

for protein-nucleotide interaction that predicts probe binding 

affinities from the non-coding sequence associated with each 

probe. It represents sequence specificity in the form of a position-

specific affinity matrix (PSAM), whose parameters, determined 

by fitting the model to a single genomewide mRNA expression 

profiling or “ChIP-chip” experiment, correspond directly to 

differences in binding free energy. MatrixREDUCE uses the 

data for all probes – not just a subset – and no “background” 

frequencies need to be defined. The inferred PSAM can be 

used to convert any nucleotide sequence to a single base-pair 

resolution (relative) binding affinity profile.

[1] H.J. Bussemaker, B.C. Foat, and L.D. Ward (2007). 
Predicting genomewide mRNA expression: From Modules to 
molecules. Annual Reviews in Biophysics and Biomolecular 
Structure.

[2] B.C. Foat, A.V. Morozov, and H.J. Bussemaker. Statistical 
mechanical modeling of genome-wide transcription factor 
occupancy data by MatrixREDUCE yields experimentally 
verified relative binding affinities (2006). Bioinformatics 22(14):
e141-9 (Proceedings of ISMB 2006 conference).

The MatrixREDUCE software can be downloaded from:

http://bussemakerlab.org/software/MatrixREDUCE/

CHROMOSOME EVOLUTION 
KENNETH ROSS LAB
Why do some groups of species have widely varying karyotypic 

features (such as the number of chromosomes) while other 

related groups have a relatively conserved karyotype?   We 

have proposed a novel hypothesis: At least part of the variation 

is caused by a species’ exposure to alpha radiation in its natural 

environment.  Most natural alpha radiation comes from decay 

progeny of radon.  Exposure is particularly high below ground, 

and is also elevated on plant surfaces due to deposition by rain.

A survey of karyotypic variation in nature provides support to 

this hypothesis.  Burrowing animals (such as gophers, rabbits, 

burrowing birds, foxes) have a widely varying karyotype, 

while their surface-resident relatives (tree squirrels, hares, 

non-burrowing birds, wolves) have a conservative karyotype.   

Herbivores have higher karyotpic variation than carnivores, 

with some interesting exceptions.  For example, camels have 

a conserved karyotype, consistent with the hypothesis since 

they inhabit regions with low rainfall.  Previously unexplained 

observations, such as that mole-rat taxa show elevated rates 

of chromosomal speciation in seismic fault zones, can also be 

explained since radon emissions are known to be elevated in 

sheared fault zones.

[1] K. A. Ross, “Alpha Radiation is a Major Germ-Line 
Mutagen over Evolutionary Timescales,” Evolutionary Ecology 
Research, 8(6), 2006, pages 1013-1028.

Visualizing with MatrixREDUCE: Position-specifi c affi nity matrix 
inferred by MatrixREDUCE, represented as an “affi nity logo” in which 
the height of the letters corresponds directly to differences in binding 
energy
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