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Welcome to the second issue of the MAGNet Center Newsletter. 

The last year has been a period of intense effort not just at Columbia 

but, jointly, across the entire community of NCBCs as we prepare to 

compete for the renewal of our Centers in 2010. As each center is gearing 

up to demonstrate its scientific accomplishments, software tools, and 

impact on the research community, we are individually ref lecting on 

our core mission and on its implications for the biomedical sciences.  

Roughly speaking, MAGNet’s mission has been the creation 

of integrative tools for the assembly and analysis of molecular 

interaction networks, within specific cellular contexts. Integration is 

a much-hyped term to describe that the set is better than the sum of 

its parts.  In biology, this concept has been much utilized in fusing 

multiple clues supporting specific hypotheses: for instance, the 

hypothesis that protein A regulates the expression of protein B. Yet 

that is but one of the ways in which knowledge can be integrated. 

For instance, as we have discovered, integration of multiple 

computational inferences, discrete layers of representation, and 

even diverse methodological  approaches can be equally valuable if 

done right. Using molecular interactions as the basis to integrate and 

analyze biological data is a leitmotif that infuses this issue’s articles 

by several MAGNet investigators, including Drs. Bussemaker, Honig 

and Mann from Columbia University, and guest writers Drs. Hannah 

Tipney  and Larry Hunter from the University of Colorado at Denver.

Drs. Honig and Mann tackle the issue of combinatorial regulation 

by multiple transcription factors during early Drosophila embryo 

development. It is clear that the complexity of multicellular 

organisms could not possibly arise from transcriptional programs 

driven by individual transcription factor proteins. We now know 

that transcription factors interact with regulatory regions of the 

chromatin in the context of transcriptional regulation complexes. 

These help both stabilize the binding by increasing affinity and also 

provide context-specific regulation of genetic programs, driven by 

the presence or absence of specific co-factors. By moving from single 

to multi-transcription factor interactions with the DNA molecule, 

for instance from individual Hox proteins to PBC-Hox complexes, 

researchers thought they could solve the transcription factor binding-

specificity problem. However, they soon realized that combining two 

proteins into a complex did not necessarily address the specificity of 

the individual interactions and that some other process contributing 

to specificity would have to be revealed by complex formation. 

Indeed, this simple observation may have lead to the discovery of the 

role of co-factors in changing transcription factor’s conformation to 

expose “hidden” features that contribute to the specificity of DNA 

binding, specifically in relationship to the shape of DNA’s minor 

groove. This progress, which is creating an entire new field of “DNA 

shape” analysis, would not have been possible without the integration 

of structural, functional, and sequence information to understand 

Hox factor binding-specificity using techniques developed within the 

MAGNet center. 

In a corresponding article by Dr. Harmen Bussemaker, the same 

issue of complex-derived specificity in Drosophila regulation 

is explored from a completely different perspective. Indeed, 

Bussemaker and colleagues at the Netherlands Cancer Institute and 

University of Chicago observed that contrary to the in vitro model of 

sequence-based DNA binding specificity of individual transcription 

factors, large scale binding assays showed that a large fraction of 

the transcriptionally active proteins are binding to hotspots (2kb-

3kb DNA regions that together account for about 5% of the total 

chromatin). Surprisingly, these do not contain the classical DNA-

binding motifs for these proteins. Indeed, even in the presence of 

single point mutations in the transcription factors’ DNA binding 

domains, researchers found hotspot binding virtually unaffected, 

showing that the process is not DNA-binding-domain mediated but 

rather effected by additional molecular interactions with nuclesome 

proteins. This again suggests that transcriptional processes should 

be studied in the context of multi-protein complexes rather than 

one transcription factor at the time. Additionally, it suggests that in 

order to understand these multi-protein binding processes, one may 

have to abandon a purely functional or sequence-based view of the 

protein-DNA interactions and start integrating information from 3D 

structural models.

Finally, Drs. Tipney and Hunter ref lect on the fact that an 

interaction-centric view of biology is not only useful in the context 

of studying protein-protein or protein-DNA interactions but may 

be extended to encompass virtually any aspect of gene and cellular 

function. Starting from a model that explicitly represents interactions 

between ontological terms as a graph, they show that it is possible to 

integrate biological knowledge, producing a signature that can reveal 

genes critically involved in the presentation of specific phenotypes. 

They call this a “3R system,” based on the fact that the model is built 

by “Reading” the literature using NLP approaches, and that it must 

then “Reason” about specific facts mapped to this graphical models, 

and then “Report” findings in a succinct, hypothesis-centric fashion, 

i.e., expressed as simple, testable predicates. This approach allowed 

the identification of four novel gene candidates for tongue formation, 

which were experimentally validated through whole mount in situ 

hybridizations to E11.5 and E12.5 mouse embryos. Surprisingly, 

one of them is the Hoxa2, an important transcription factor in early 

development, whose expression had been previously studied in 

unrelated contexts. 

- Andrea Califano, Ph.D.
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Microarray experiments, genome-wide association studies, 

and a plethora of new methods exploiting low-cost sequencing 

technology now routinely produce data at genomic scale.  

Researchers have long known that most biological phenomena, 

especially those relevant to human health, involve complex 

interactions among dozens, hundreds or even thousands of gene 

products.  The technologies that make possible simultaneous 

observations regarding the presence or activity of all of the gene 

products in a biological sample have already yielded a bonanza of 

biomedical insights. 

In large part due to this genome-scale technology, human 

knowledge relevant to biomedical research is exploding.  The 

PubMed bibliographic database contains more than 17 million 

publications, adding nearly 800,000 in 2008 alone.  In addition 

to this traditional scientific literature, the latest Nucleic Acids 

Research database issue (2009) lists 1170 more structured 

collections of molecular biology information, including critical 

resources such as GenBank for macromolecular sequences and 

the PDB for structures, dozens of model organism databases 

with curated function information, and growing collections of 

microarray data, genotype repositories, and more.

However, the combination of genome-scale assays and huge 

increases in human knowledge of molecular biology poses its 

own challenges.   The groups of genes identified in a particular 

experiment—and the many interactions among them—need to be 

understood in the context of all that is already known about them.  

For a typical experiment, that can mean hundreds of genes, tens 

of thousands of interactions and at least as many publications 

and database entries that have to be digested to fully exploit 

one’s own results. Exploring genome-scale results in light of 

everything else that has ever been published is a huge challenge.  

Genome-scale data rarely respects disciplinary boundaries, so 

papers and results from many fields, likely some unfamiliar to 

the experimentalist, have to be appreciated.  No wonder this task 

can seem overwhelming for bench scientists!  Unfortunately, 

failure to take full advantage of this wealth of prior knowledge 

can cause important results to be overlooked or misinterpreted, 

wasting time, effort and money.

For many years, efforts have been made to centralize all of 

the information relevant to the interpretation of genome-scale 

data into an integrated, easy to use form.  The National Library 

of Medicine’s NCBI, the European Bioinformatics Institute, 

and various model organism databases all have made extensive 

and valuable efforts in this regard. Yet these efforts have not 

been entirely successful, for several reasons.  First, much of 

the necessary information is expressed in unstructured form, 

written in the natural language of journal articles and the like. 

Valiant (and valuable) efforts by biocurators to manually process 

the entire literature and represent its content formally appear 

unable to keep up with the rate of publication and the many 

potentially important facts expressed in each article.  Second, 

much human thought about biomolecular function is not explicitly 

stated in any database or publication, but is instead the result 

of inferences regarding possible functions of a molecule, made 

by considering factors such as homology, location, interaction 

partners, expression patterns, knockout phenotypes and so on.  

A third problem involves the best way to present this enormous 

amount of information to a bench scientist trying to interpret 

a large dataset.  A stack of hundreds of gene summaries is not 

much easier to digest than hundreds of journal publications, nor 

necessarily an easy path to understanding one’s data in context.

Our laboratory has been developing computational approaches 

that address each of those problems.  We call them “3R systems,” 

since they have to read the literature, reason about implicit 

Three R’s of Computer Assisted 
Biomedical Discovery: Reading, 
Reasoning and Reporting.
Hannah Tipney, PhD1 & Lawrence Hunter, PhD1
1School of Medicine, University of Colorado, Denver
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information, and report the aspects that are relevant to the 

interpretation of a dataset.  We recently published an article in 

PLoS Computational Biology describing the Hanalyzer, a 3R 

system that helped interpret a complex craniofacial development 

expression array dataset, leading to the discovery of four novel 

genes involved in the development of the mammalian tongue.

Our systems are built on a foundation of community-curated 

ontologies such as the Gene Ontology, and on public database 

identifiers for genes and gene products.  We construct a 

knowledge network in which the nodes are ontology terms or 

gene identifiers, the nodes are linked together by edges that 

represent various types of relationships, and where each edge 

is quantified with a reliability score.  The knowledge network 

is initially built by reading (using text mining programs and 

semantic database integration techniques), and then expanded 

by various kinds of reasoning.  We create a data network that 

describes the results of a particular genome-scale experiment.  

In this network, the nodes are identifiers specifying significant 

genes or gene products, and links are drawn between genes that 

interacted in the experiment, each quantified with the degree of 

interaction (e.g. by correlation coefficient over a time course).    

Finally, we then construct visualizations that make it easy for a 

scientist to tell where the networks align (meaning that there 

was existing knowledge about a set of genes and relationships 

observed in the data) or don’t (possible new discoveries), and to 

explore all of the knowledge relevant to those relationships in a 

uniform system, based on the popular Cytoscape platform.

The initial population of a knowledge network begins with the 

extraction of gene product interaction information from existing 

databases of protein-protein interactions and protein-DNA 

interactions (transcription factors).  We then add the results of 

our highly effective concept recognition system, OpenDMAP, 

as well as other text mining approaches (such as gene name co-

occurrence over all PubMed abstracts) to cast a net over as much 

of the literature as we can.

We augment this reading-based network by reasoning about 

relationships.  Many relationships between gene products can be 

inferred on the basis of shared characteristics.   Inferences can 

be made on the basis of participation in a particular metabolic or 

signaling pathway, biological process, shared molecular function 

or functional domain, co-localization to a particular subcellular 

compartment, related phenotype on knockout, and various other 

shared characteristics.  More complex inferences, involving 

reasoning over ontology term cross-products are also possible, for 

example linking a calcium transport gene to a calcium signaling 

gene.   While each of these inferences is potentially erroneous, 

all reliabilities are quantified, and multiple independent lines of 

reasoning often strengthen the belief in a linkage.

The data network from an experiment is combined with the 

knowledge network, visualized with a set of Cytoscape plugins 

that filter and color-code the relationships based on the strength 

of the data and knowledge underlying each.  By clicking on a 

relationship, a user can see all of the sources of knowledge that 

support it, drilling down to each for more detail as needed.   In 

the craniofacial example described in the PLoS Computational 

Biology paper, the Hanalyzer was first used to try to explain 

a group of genes with a particular tissue- and time-specific 

expression profile.  By exploring the relationships that were well 

supported in the knowledge network, the analyst decided that 

these genes were likely involved in tongue development.  She 

then added in the relationships that were strong in the data, but 

not ref lected in the knowledge network, identifying four genes 

that had no published association with craniofacial muscle 

development, but she hypothesized were also involved in tongue 

development. Remarkably, all four hypotheses were biologically 

validated through whole mount in situ hybridizations to E11.5 

and E12.5 mouse embryos.

The Hanalyzer demonstrates the potential of 3R systems, but is 

just the first step in the development of more powerful systems 

with improvements in each “R”.  Text mining is a rapidly evolving 

field, and the growth of repositories like PubMedCentral is 

opening many opportunities for full text natural language 

processing.  Many existing methods in computational reasoning 

and visualization can likely be applied productively in the future.  

We hope to enhance the power and utility of 3R systems to 

the point where they are routinely used by bench scientists to 

interpret genome-scale experiments and to help in the generation 

of novel and significant hypotheses.

The Hanalyzer is available for download at http://hanalyzer.

sourceforge.net/

We construct a knowledge network 
in which the nodes are  

ontology terms or gene identifiers
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A sample of relevant papers from our lab

Bada M, Hunter L (2007) “Enrichment of OBO ontologies.” J Biomed Inform 40: 300-315.

Baumgartner WA Jr, Lu Z, Johnson HL, Caporaso JG, Paquette J, Lindemann A, White EK, Medvedeva O, Cohen KB, Hunter L. 
Concept recognition for extracting protein interaction relations from biomedical text. Genome Biol. 2008;9 Suppl 2:S9.

Baumgartner WA, Jr., Cohen KB, Fox LM, Acquaah-Mensah G, Hunter L (2007) “Manual curation is not sufficient for annotation of 
genomic databases.” Bioinformatics 23: i41-48.

Gabow A, Leach S, Baumgartner WA, Jr., Hunter L, Goldberg D (2008) “Improving protein function prediction methods with 
integrated literature data.” BMC Bioinformatics 9.

Hunter L, Cohen K (2006) “Biomedical language processing: what’s beyond PubMed?” Molecular Cell 21: 589-594.

Hunter L, Lu Z, Firby J, Baumgartner WA, Jr., Johnson HL, et al. (2008) “OpenDMAP: an open source, ontology-driven concept 
analysis engine, with applications to capturing knowledge regarding protein transport, protein interactions and celltype-
specific gene expression.” BMC Bioinformatics 9: 78.
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Figure 1: Text mining in Hanalyzer
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Introduction

Transcription factors (TFs) play a central role in the 

regulation of genome expression. By interacting with DNA in 

a highly sequence-specific manner, these proteins coordinate 

interaction with the polymerase complexes that transcribe 

DNA to messenger RNA. Whenever cells respond to internal or 

external signals, relayed by signal transduction pathways, it is 

the transcription factors that are charged with the ultimate task 

of increasing or decreasing the transcription rate of specific 

genes. The number of different TFs ranges from hundreds in 

simple organisms such as yeast to thousands in mammalian cells. 

However, in spite of many years of detailed research by many 

groups, a general mechanistic and quantitative framework for 

understanding how they function is still largely lacking. MAGNet 

investigator Dr. Harmen Bussemaker and his collaborators are 

taking a transcription-factor-centric computational approach 

to deciphering gene regulatory networks. Their research has 

yielded some surprising results.

Transcription binding in vitro: from sequence to affinity

Before there can be any hope of understanding how the 

transcriptional machinery interacts with the genome in a living 

cell, we need good quantitative models of how individual TF 

proteins interact with “naked” DNA in a test tube. Until recently, 

researchers mostly thought in terms of discrete cis-regulatory 

elements in DNA, and related bioinformatics tools were based 

on the binary classification between sequence “bound” and 

“unbound” by the TF. It has become increasingly clear, however, 

that quantification of TF-DNA binding affinity is essential for 

understanding TF function. From the point of view of a TF, the 

double-stranded DNA molecule at the core of each chromosome 

looks like an affinity landscape, where each position on the 

chromosome has its own dissociation constant Kd  (equal to the 

concentration at which the site is 50% occupied), which in turn 

depends on the local DNA sequence. High-throughput chromatin-

immunoprecipitation (ChIP) [1,2] and protein binding microarray 

(PBM) [3] experiments have generated data about TF-DNA 

interaction on an unprecedented scale. However, sophisticated 

computational methods are required to distill accurate sequence-

to-affinity models from these data. The Bussemaker lab has 

pioneered methods that directly estimate the binding free energy 

parameters (∆∆G) that define the sequence specificity of TFs by 

fitting biophysical models to high-throughput data (Figure 1) 

[4-7]. Ongoing work in the Bussemaker Lab aims to incorporate 

structural information about the TF-DNA interface as part of 

Dissecting transcription factor 
function on multiple scales

Harmen J. Bussemaker, PhD1,2
1Department of Biological Sciences, Columbia University
2Center for Computational Biology and Bioinformatics, Columbia University

Figure 1: Inferring binding free energy parameters directly 
from high-throughput protein-DNA interaction data. 

(A) The biophysical model underlying the MatrixREDUCE 
software. (B) Position-specific affinity matrices (PSAM) allow 
one to see DNA sequence as an affinity landscape from the 
point of view of a specific TF. (C) A genome-wide fit to ChIP-
chip serves to determine the relative affinity parameters that 
constitute the PSAM. (D) Plot of predicted promoter affinity 
versus ChIP fold-enrichment.

A B
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these models, towards the ambitious goal of inferring a universal 

protein-DNA recognition code (Figure 2).

Hotspots of trancription factor binding in vivo.

While the relationship between DNA sequence and TF binding 

is still relatively straightforward in the test tube, this is not at all 

the case in the living cell, where interactions with nucleosomes 

and other chromatin-associated proteins all contribute to the 

binding profile of the TF along the chromosome. The recruitment 

of a TF to specific locations on the chromosome can in fact be 

completely independent of its DNA-binding domain. That this is 

true for about 5% of the fruit f ly genome is the surprising discovery 

that was made in collaboration with Dr. Bas van Steensel at the 

Netherlands Cancer Institute and Dr. Kevin White, currently 

at the University of Chicago. Using DamID technology (which 

works differently from ChIP but provides similar information) 

[8] to map the binding of a large number of chromatin-associated 

proteins, it was found that most TFs in Drosophila are specifically 

recruited to 2-3kb large regions that together constitute about 5% 

of the genome [9]. Strikingly, these “hotspots” did not contain 

any predicted binding sites for the TFs. To further investigate  

this phenomenon, the binding of two variants of the well-known 

Bicoid (Bcd) protein was analyzed. The first variant consisted of 

only the DNA-binding domain of Bcd. As expected, it bound only 

to regions with high in vitro binding affinity. The second variant 

consisted of the entire Bcd protein but carried a point mutation 

that inactivates the DNA-binding domain. This protein was no 

longer bound the in vitro binding sites, but was still recruited 

very specifically to the hotspots. The Bussemaker lab is currently 

investigating to what extent interactions with nucleosomes and 

other TFs can account for this phenomenon.

Multi-gene domain organization of chromatin.

Proteins often function as part of a protein complex or 

biochemical pathway. The cell has therefore developed 

mechanisms for coordinately regulating the expression of 

multiple genes, such as those that involve transcription factors. 

Recently, however, it has become increasingly clear that physical 

proximity of genes along the genome can also serve to coordinate 

the regulation of functionally related genes. The Bussemaker and 

Van Steensel labs recently discovered that at least 50% of all fruit 

f ly genes are organized into multi-gene chromatin domains bound 

by specific combinations of proteins (Figure 3). These domains 

are functionally coherent both in terms of gene expression and 

in terms of functional annotation, and evolutionary selection acts 

against chromosomal rearrangements that break them up.

Conclusion.

Taken together, these results underscore the complexity of 

in vivo transcription factor function. Dissecting the various 

mechanisms that contribute to their target specificity is likely to 

keep researchers busy in coming years, and additional surprises 

are undoubtedly still in store.

Figure 2: Decoding protein-DNA recognition.

The Bussemaker lab is developing methods that integrate 
structural information with high-throughput genomics data 
to better predict protein-DNA binding affinities. Shown here 
are all instances in the Protein Data Bank of an interaction 
between an A-T base pair in double-stranded DNA and 
a lysine side-chain in the DNA-binding domain of a TF 
(side (left) and top (right) views relative to the base pair 
coordinate frame). The spheres denote the position of each 
Cα backbone carbon; the side-chains themselves are not 
shown. Colors correspond to different TF structural families. 

Images created by Dr. Xiang-Jun Lu in the Bussemaker Lab.



Figure 3: Global Chromatin Domain Organization of the Drosophila Genome.

(A) “Domainograms” allow visualization of chromosomal clustering of protein binding on all length scales simultaneously. A dynamic programming algorithm 
was developed that parses the binding profile along the chromomosome in terms of discrete domains or “BRICKs”.

(B) Overview of the BRICKSs detected for all proteins that were mapped, revealing the large degree of chromatin domain organization in Drosophila.

Figures reproduced from De Wit et al. [10]
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Introduction

“In evolution, nature built these 

regulatory circuits; now the world 

is run by these switches” - Dr. Mark 

Ptashne, quoted in  a NY Times 

article by PHILIP J. HILTS published 

February 24, 1998.

As most molecular biologists know, 

the “switches” Ptashne is referring to 

in the above quote are controlled by 

transcription factors (TFs), proteins 

that bind DNA and cause genes to 

be expressed or not. In a relatively 

simple case, such as the switch 

that governs phage lambda’s choice 

between lytic and lysogenic states 

(a problem that Ptashne spent many 

years studying) the transcription 

factor is lambda repressor (Ptashne, 

1992). Lambda repressor has two 

important functional domains: one 

that recognizes DNA and one that 

binds to other lambda repressor 

molecules. These two domains, in 

combination with precisely spaced 

binding sites in lambda DNA that 

help to promote repressor-repressor 

interactions, are sufficient to control 

nearby genes and thereby decide 

whether this switch will be f lipped to 

the lytic or lysogenic state.

Remarkably, the principles 

discovered in lambda and other simple 

transcriptional switches are also used 

in more complex biological settings, 

such as in eukaryotic gene regulation. 

However, life is much more complex 

as a eukaryote. For one, genomes 

are generally much larger, making 

it more difficult for transcription 

factors to find the right binding sites. 

Second, higher eukaryotes tend to 

have many cell types, where it is not 

uncommon for the same transcription 

factor to regulate two very different 

sets of genes. Third, transcription 

factor binding sites can often be 

highly degenerate, which for most 

transcription factors results in the 

presence of more than one potential 

binding site in every gene. Finally, 

eukaryotic DNA exists as chromatin, 

where it is wrapped around large 

protein particles called nucleosomes. 

Thus, eukaryotic transcription factors 

not only have to find binding sites in 

DNA, they have to navigate through 

chromatin. Nevertheless, somehow 

eukaryotic cells “know” how to read 

and accurately interpret regulatory 

DNA, allowing them to create 

complex biological structures such as 

eyes, hearts, and limbs. As molecular 

biologists who study transcription 

factors in eukaryotes, our goal is to 

do what the cell can do, namely read 

the DNA and “know” what it means.

Some of the problems faced by 

eukaryotes are solved by the use 

of combinations of transcription 

factors to regulate genes. Such 

a combinatorial mechanism is 

especially useful for allowing the 

same transcription factor to execute 

different functions in different cell 

types: in cell type A, to regulate gene 

X, transcription factors a, b, and c 

might be required, while in other 

cell types, and at other genes, other 

unique combinations of transcription 

factors may be used.

A special, yet widely used type 

of combinatorial control is when 

transcription factors bind to DNA 

cooperatively. The definition of 

cooperative DNA binding is when two 

or more TFs bind to DNA with a much 

higher affinity together than the sum 

of their individual affinities. Most 

typically, and exemplified by lambda 

repressor, this occurs when the 

proteins can interact with each other, 

as well as with DNA. If the binding 

sites are arranged appropriately, 

the protein-protein interaction can 

significantly stabilize the final 

protein-DNA complex, thus making 

its formation ‘cooperative’.

Yet, despite these insights, we 

are still far from interpreting the 

sequences of eukakryotic regulatory 

DNA with any accuracy. Certainly, 

the principles learned from simpler 

systems must apply in eukaryotes, 

but our general inability to predict 

the function of regulatory DNAs 

suggests that there may be more to 

this problem than a simple direct 

readout of the DNA sequence by DNA 

binding domains. By trying to solve 

the problem of how a unique subset 

BARRY HONIG, PHD 1,2 Richard S. Mann, Phd 1

Making sense of transcription factor specificities 
or how to grow legs in strange places: 
a collaboration between flies, biophysics, and 
computers

1Department of Biochemistry and Biophysics, Columbia University
2Center for Computational Biology and Bioinformatics, Columbia University
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of eukaryotic transcription factors, encoded by the Hox 

genes, function, we may have discovered such a new twist 

on DNA recognition by DNA binding proteins.

Hox transcription factors

The homeotic or ‘Hox’ genes were first discovered by 

genetic experiments carried out by Ed Lewis in the 1950s 

and 1960s in the fruit f ly, Drosophila melanogaster (Lewis, 

1978). These genes first caught the attention of geneticists 

and developmental biologists because mutations in them 

caused body parts, such as the legs, antennae, and wings, to 

switch identities. For example, the bithorax (bx) mutation, 

one of the first to be discovered, results in a small structure 

known as the haltere, which helps the f ly balance during 

f light, to develop as a wing instead of a haltere (Figure 1). 

Analogously, the original mutation in the Antennapedia 

(Antp) gene causes antennae to develop as legs. These 

swaps in developmental fates were termed homeotic 

transformations, following the concept of homeosis as 

first defined by William Bateson who described, in a 

now classic book, similar types of aberrations in wild 

populations of animals (Bateson, 1894). In fact, we now 

know that aberrations such as extra digits on hands or feet, 

a phenotype that Bateson included in his book, are due to 

changes in Hox gene expression (Goodman, 2002).

Moving ahead several decades, we now know that probably 

all multicellular animals have a series of Hox genes (8 

in the fruit f ly; 39 in humans) (McGinnis and Krumlauf, 

1992). Each Hox gene is expressed in a specific subset of 

cells in developing embryos, most typically in different 

regions along the anterior-posterior (AP) axis (Figure 2). 

In other words, most cells of a developing embryo express 

some combination of Hox genes that depends on their AP 

position within the body plan. 

Hox genes all encode transcription factors that bind DNA 

using a DNA binding domain known as the homeodomain. 

Thus, the answer to homeosis - - why cells make a leg instead 

of an antenna – is somehow embedded into the function of 

these transcription factors. It is worth here emphasizing 

what the genetic results tell us: namely, that the presence 

or absence of single Hox transcription factors determines 

the developmental outcomes of entire body parts. Thus, 

while it is almost certainly the case that these transcription 

factors never work alone, which one is present, and how 

they bind DNA and regulate their target genes, is the key 

to which structure an animal will build.

The homeodomain enigma

In principle, if we knew how Hox proteins bind and 

regulate the correct target genes, we’d be a long way 

towards understanding how these big developmental 

decisions, like whether to make an antenna or a leg, get 

made. The same is true for many transcription factors 

that sit atop developmental hierarchies. Another good 

example is Eyeless, which, like the Hox factors, is also a 

homeodomain protein. Also first discovered in fruit f lies, 

this highly conserved transcription factor is known to 

be important for making eyes in many animal species, 

whether the eye is a compound eye as in the fruit f ly or a 

human eye (Gehring, 1996). The problem, however, is that 

Figure 1: Hox mutant phenotypes.

(A) Wild type fruit fly with one pair of wings and one pair of halteres 
(blue arrow). 

(B) Ubx mutant fruit fly, showing a transformation of haltere to wing 
(blue arrows). After Lewis, 1978.

Figure 1: Hox complexes.

Fruit flies have a single set of eight Hox genes, split into two 
complexes, the Antennapedia Complex (Antennapedia-C) and the 
Bithorax complex (Bithorax-C). Humans have four sets of Hox genes 
(39 in total), Hox A, Hox B, Hox C, and Hox D, likely resulting from 
duplications that have occurred during evolution. Within each Hox 
cluster, and in both fruit flies and vertebrates, the genes are ordered 
along the chromosome in the same order they are expressed along 
the embryonic anterior to posterior axis. In vertebrates, there has 
also been additional expansion of the posterior AbdB-like genes.



Figure 3. Hox-PBC complexes.

Crystal structures of four Hox-PBC-DNA complexes, HoxB1-Pbx (A), Scr-Exd (B), Ubx-Exd (C), and HoxA9-Pbx (D) are shown. All four complexes 
show a very similar arrangement of the Hox and PBC homeodomains, and a nearly identical protein-protein interaction mediated by the Hox 
‘YPWM’ motif (or close variants) and the PBC homeodomain. In addition to showing a similar overall arrangement of the homeodomains, 
all four structures show Arg5 of the Hox homeodomain interacting with the minor groove. However, of these four, only the Scr-Exd structure 
was solved with a Hox-specific binding site (fkh250) and only this structure shows additional basic side chains inserting into the DNA minor 
groove (green arrows, B). Structures were described in (Joshi et al., 2007; LaRonde-LeBlanc and Wolberger, 2003; Passner et al., 1999; 
Piper et al., 1999).
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homeodomain proteins have notoriously low DNA binding 

specificities. In fact, nearly all Hox proteins bind to very 

similar DNA sequences in vitro (Affolter et al., 2008; 

Berger et al., 2008; Noyes et al., 2008). What’s worse is that 

Hox proteins even have similar DNA binding specificities 

to a wealth of other homeodomain proteins present in 

eukaryotic cells, including Eyeless! Yet, which genes a 

Hox protein regulates to make a leg must be dramatically 

different from those that Eyeless regulates to make an eye. 

Clearly, something must be missing in these in vitro DNA 

binding experiments that cells use to allow them to carry 

out their specific functions in vivo.

As described above, transcription factors often use the 

trick of binding DNA cooperatively with other factors to 

increase their specificity. About 12 years ago, a protein 

that binds cooperatively with Hox proteins was described 

(Mann and Chan, 1996). In f lies, this protein is called 

Extradenticle (Exd), while its three mammalian orthologs 

are called Pbx1, Pbx2 and Pbx3 (Moens and Selleri, 2006). 

Over the past decade, many studies have shown that Exd/

Pbx (which are collectively referred to as PBC proteins) are 

critical for Hox proteins to carry out their specific functions 

in vivo. Interestingly, PBC proteins are also homeodomain 

proteins, and the cooperative complex formed between Hox 

and PBC factors is a head-to-tail dimer for which several 

X-ray crystal structures now exist (Figure 3) (Joshi et al., 

2007; LaRonde-LeBlanc and Wolberger, 2003; Passner et 

al., 1999; Piper et al., 1999).

To some researchers, the finding of PBC-Hox cooperative 

binding “solved” the specificity problem, at least for Hox 

proteins. However, in reality this finding only raised more 

questions than it answered. In particular, PBC proteins 

have the capacity to form cooperative heterodimers with 

nearly all of the Hox factors. Thus, to a first approximation, 

PBC-Hox cooperativity only provides an additional set 

of protein-DNA contacts (via the PBC homeodomain), 

but these new contacts are the same for all of the Hox 

factors. In other words, for PBC proteins to actually help 

distinguish between the specificities of different Hox 

proteins, they would have to do something more than just 

provide an additional set of protein-DNA contacts. Instead, 

they might uncover hidden specificity information that was 

built into the Hox proteins. One way to think about this is 

that PBC factors might change the conformation of a Hox 

protein, such that it could now “read” the DNA in ways that 

it could not in the absence of PBC proteins.

PBC proteins reveal latent specificity information 

built into Hox proteins

Although there was plenty of circumstantial evidence to 

support such a model (Mann and Chan, 1996), recently, 

in part due to funding from a MAGNet grant, we have 

obtained direct evidence supporting this idea (Joshi et al., 
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2007). Acquiring this evidence required the combination 

of methods from biochemistry, genetics, biophysics, and 

structural biology, providing a compelling argument 

for why multidisciplinary approaches in biology can be 

extremely powerful and need to be supported in the future.

In the center of this work lie two X-ray crystal structures 

in which the same two proteins, the Hox protein Sex 

combs reduced (Scr) and the PBC factor Extradenticle 

(Exd), were crystallized on two different binding sites. 

The first binding site, called fkh250 is a native binding 

site from the forkhead (fkh) gene, a natural target of Scr 

in Drosophila (Andrew et al., 2000; Ryoo and Mann, 1999). 

The activation of fkh by Scr is critical for making salivary 

glands during embryogenesis, and no other Hox factor 

has this ability. Thus, the regulation of fkh by Scr is what 

we refer to as a Hox-specific function, and contrasts with 

other Hox functions that may not require such exquisite 

specificity. Importantly, and consistent with this idea, Scr-

Exd heterodimers bind to fkh250 10 to 20 times better than 

other Hox-Exd heterodimers (Ryoo and Mann, 1999). Thus, 

unlike most other well-studied Hox binding sites (including 

those used in previous structures), fkh250 exhibits the 

type of specificity in vitro which would be expected of an 

Hox-specific binding site. The second binding site, called 

fkh250con, differs from fkh250 in only three positions. 

In contrast to fkh250, most Hox-Exd heterodimers bind 

fkh250con with high affinity, approaching the affinity that 

Scr-Exd has for fkh250. Thus, unlike fkh250, fkh250con 

does not exhibit specificity for a particular Hox factor. 

The Scr specificity exhibited by fkh250, and the lack of 

specificity exhibited by fkh250con, is also observed when 

these binding sites are used to drive artificial reporter genes 

in vivo in Drosophila embryos, strengthening the argument 

that these binding sites contain all of the information 

required to produce Hox-specific (as in the case of fkh250) 

or Hox-non-specific (as in the case of fkh250con) readouts 

in vivo (Ryoo and Mann, 1999).

The two crystal structures described in Joshi et al. (2007) 

thus provide a unique and direct comparison between the 

same protein complex, binding its ‘specific’ binding site 

(fkh250) and a ‘Hox-non-specific’ binding site (fkh250con). 

This comparison revealed several unexpected features, 

some of which are likely to be critical for understanding 

DNA binding specificity by these proteins. For one, the DNA 

minor groove had a different shape in the two structures. 

In fkh250 the minor groove is narrower in the center of the 

Hox-Exd binding site compared to the equivalent region of 

the fkh250con binding site. Theoretical and computational 

work showed that this narrower minor groove leads to a 

more negative electrostatic potential (Figure 4). In other 

words, the fkh250 binding site has a negatively charged 

pocket right in the center of the Hox-Exd binding site. In 

contrast, the equivalent position in the fkh250con binding 

site, although still negative, is not as negative (Figure 4). 

Using a separate set of computational methods, we also 

found that the shapes of the minor grooves seen in both 

complexes are likely to be a direct result of the DNA 

sequence, and is not induced by protein binding. In other 

words, the shape differences present in these two DNA 

sequences are intrinsic to these DNAs.

The negative pocket present in the fkh250 binding site 

is, we believe, critical for its Hox-selectivity, and a model 

summarizing this is shown in Figure 5. In particular, these 

findings suggest that the localized negative electrostatic 

potential in fkh250 results in it being a poor (i.e. low-

affinity) binding site for most Hox-Exd heterodimers. 

If so, then why can Scr-Exd bind to this site with such a 

high affinity (~10 nM Kd)? The answer is that Scr has basic 

residues (an Arginine and a Histidine) in its N-terminal arm 

(a part of the homeodomain) and nearby linker that insert 

into this negative pocket, thus counteracting its repulsion. 

Most other Hox proteins do not have these basic residues 

Figure 4. Shape and charge differences between fkh250 and 

fkh250con

Shown are DELPHI images of fkh250 (left) and fkh250con (right), 
illustrating the shape and charge differences between these two DNAs. 
Red: negative; blue: positive. Arg5 of Scr is present in both minor 
grooves, but Arg3 and His-12 are only observed inserting into the minor 
groove of the fkh250 binding site. The shape of the minor groove is 
narrower where these side chains are inserting in the fkh250 binding 
site compared to the equivalent region of the fkh250con binding site. 
See Joshi et al (2007) for details.
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in the equivalent position, and thus cannot overcome the 

negative repulsion of the fkh250 binding site. 

How well do these results support the model that Exd 

reveals latent specificity information built into Hox 

proteins? The answer is: remarkably well.  Scr needs Exd 

to position the Arg and His so that they can insert into the 

negative pocket (Figure 5). Without Exd, the peptide (Scr 

N-terminal arm and linker) that these residues come from 

is not structured and is more likely to be interacting with 

water rather than DNA. Thus, although the Arg and His 

residues are present in Scr, they are not able to “read” the 

DNA unless Exd is there to help force these residues into 

the appropriate conformation (Figure 5).

Local shape recognition: a common mode 

of DNA recognition?

The results with Scr-Exd-fkh250 raise another novel, 

and potentially general, feature of DNA recognition by 

transcription factors. Specifically, because the basic side 

chains present in Scr are inserting into a negative pocket 

formed by the unusually narrow minor groove in fkh250, we 

suggest that they are reading a DNA shape, not a specific 

DNA sequence. This mode of DNA recognition contrasts 

with the classical way that proteins are thought to bind 

specific DNA sequences, which depend on hydrogen bonds 

formed between amino acid side chains and DNA base 

pairs.

The idea that proteins read a DNA shape – in this case, 

the shape of the minor groove – appears to be a previously 

unknown mode of protein-DNA recognition, one that we 

call local shape recognition. Indirectly, of course, the shape 

of the minor groove is a consequence of the DNA sequence. 

Our results, however, suggest that different DNA sequences 

can generate similar shapes. Conversely, distinct DNA 

sequences that fit the same “consensus” binding site for a 

particular factor (such as the AT-rich DNA sequences that 

homeodomains like to bind to) can have different shapes. 

Thus, if local shape recognition is generally used by DNA 

binding proteins, it may be a mechanism to distinguish 

between DNA sequences that all conform to the same 

consensus sequence. 

Our recent results, in fact, strongly suggest that local 

shape recognition of DNA by transcription factors may be 

widely used in biology. Systematic analyses of all available 

protein-DNA structures present in the Protein Data Bank 

(PDB) reveal that the pattern of minor groove width varies 

tremendously in DNA sequences recognized by a large 

number of DNA binding domains. Moreover, in most of the 

minor groove width minima present in these structures, 

there is an Arginine side chain, suggesting, as is the case 

for Scr-Exd, that the insertion of basic amino acid side 

chains into narrow minor grooves may be commonly used 

by DNA binding proteins.

Implications and future prospects

As alluded to at the start of this article, molecular 

biologists are still unable to do what living cells can do, 

namely, read a DNA sequence and interpret its regulatory 

properties. The results summarized here, which came from 

a unique convergence of structural biology, biochemistry, 

developmental biology, and biophysics, suggest that we may 

also have to take local DNA structure into consideration to 

fully decode regulatory DNA. Although almost always a 

double helix, small deviations from the canonical B-DNA 

structure, such as short stretches in which the minor 

groove is narrower than usual, can have profound effects 

on DNA recognition by transcription factors and perhaps 

other factors that interact with DNA. Work in the future 

must first continue to test the generality of these findings. 

If, however, these findings are as general as they currently 

seem to be, we must next devise new tools to decipher this 

previously unappreciated mode of protein-DNA recognition 

through which nature achieves in some cases exquisite 

specificity. No doubt that the deepest insights will continue 

to come when a multidisciplinary approach is applied, as 

exemplified by the work described here.

Figure 5. Hox specificity depends on local shape recognition: a model.

The first three panels show Hox-Exd dimers in the presence of the 
fkh250 binding site, which has a narrow minor groove (small arrows) 
and negative electrostatic potential (pink dashes) in the center of the 
binding site. The fourth panel shows the fkh250con binding site, which 
does not have these characteristics. Scr-Exd, but not other Hox-Exd 
dimers, can effectively bind to the fkh250 binding site because Exd 
positions a normally unstructured peptide so that the basic side chains 
(short blue lines) can insert into the negative pocket formed by the 
narrow minor groove. In contrast, because fkh250con does not have 
this negative pocket, it is less selective and can bind multiple Hox-Exd 
dimers.
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RNA viruses as probes of evolution
RAUL RABADAN LAB
Viruses are obligate intracellular parasites and the evolution 

of a virus is inexorably linked to the nature and fate of its host. 

One therefore expects that virus and host genomes should have 

common features.  

The innate immune response provides a first line of defense 

against pathogens by targeting generic differential features 

that are present in foreign organisms but not in the host. 

These mechanisms generate selection forces acting both on 

pathogens and hosts that further determine their co-evolution. 

Our lab studies the fingerprints of these selection forces acting 

in parallel on both host innate immune genes and ssRNA viral 

genomes.  Biases are identified in the coding regions of innate 

immune response genes in plasmacytoid dendritic cells and then 

used to predict significant host innate immune genes. We then 

compare the significant motifs in highly expressed innate genes, 

to those in ssRNA viruses and study the evolution of these motifs 

in the H1N1 inf luenza genome. The deeply under-represented 

motif pattern of CpG in an AU context - which is found in the both 

ssRNA viruses and innate genes, and has decreased throughout 

the history of H1N1 inf luenza - is immunostimulatory and has 

been selected against during the co-evolution of viruses and 

host innate immune genes.   This shows how differences in host 

immune biology can drive the evolution of viruses that jump to a 

species with different immune priorities than the original host.

Since the spring of 1977, two subtypes of inf luenza A virus (H3N2 

and H1N1) have been seasonally infecting the human population; 

this pattern is very different from what was observed after 

previous inf luenza pandemics. In 1918, 1957, and 1968, new viral 

strains completely supplanted the prior ones. The reappearance, 

in May of 1977 in Northern China, of the H1N1 virus, a virus 

that had been considered extinct in the human population since 

1957, had serious consequences. Children became especially 

sick because they had never been exposed to the H1N1 virus. 

Since 1978, the inf luenza vaccine has contained H1N1 viral 

antigens, in addition to the previously circulating H3N2. In the 

last few years, there has been an international effort to sequence 

inf luenza isolates, and to make publicly available the extensive 

information that has been gathered on them. We have studied 

the distribution of patient ages within the populations that 

exhibit the symptomatic disease caused by each of the different 

subtypes of inf luenza virus; when information is pooled across 

multiple geographical locations and seasons, striking differences 

emerge between these subtypes. The symptomatic f lu due to 

H3N2 is distributed across all age groups, whereas H1N1 causes 

symptomatic disease mainly in a younger population. This trend 

is probably a remnant of the effect that was observed in 1977, i.e. 

young persons were more affected by the H1N1 virus than were 

older ones. The above findings suggest that a previous exposure 

to an inf luenza subtype confers a long-lasting protection, even 

more than 30 years after the differential event (1977). Each 

subtype affects its own characteristic spectrum of age groups.  

This “signature” is relevant to age-related risk assessments, 

modeling of epidemiological networks for specific age groups, 

and age-specific vaccine design. 

Viruses present such a diversity and fast evolution that standard 

techniques of sequence alignment fail to provide significant 

similarity between emerging viruses and the ones already known. 

We are developing and implementing algorithms to analyze High 

Throughput Sequencing data that allow the identification of 

emerging viruses without relying on sequence alignment.

 

Figure 1: Comparison between human genes and human ssRNA 

viruses. CpG odds ratio versus C+G content for human genes in blue. 

Superimposed on top of these genes are the human single stranded 

RNA viruses (human ssRNA+ (black) and Human ssRNA−(red)). We 

can appreciate how human ssRNA viruses follow a similar distribution 

as human genes.
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Helping researchers manage and 
analyze genomic data
ARIS FLORATOS AND 
ANDREA CALIFANO LABS
High throughput genomic technologies are increasingly 

becoming key drivers of significant discoveries in biomedical 

research. The massive nature of the data produced by such 

technologies, however, means that in order to utilize them 

effectively it is necessary to develop and deploy non-trivial 

management and analysis infrastructure. NIH programs like the 

National Centers for Biomedical Computing (which the MAGNet 

Center is a member of) and the cancer Biomedical Informatics 

Grid (caBIG®) fund the development of tools whose aim is to 

help researchers meet these challenges. 

In an effort to further encourage and support the adoption 

of these sophisticated tools, caBIG® has recently launched 

the Enterprise Support Network (ESN, https://cabig.nci.nih.

gov/esn), a collection of resources and organizations providing 

services, mentoring and expertise to members of the biomedical 

research community who are interested in exploring the caBIG® 

software and technology offerings. A component of the ESN, the 

Molecular Analysis Tools Knowledge Center (MATKC, https://

cabig-kc.nci.nih.gov/Molecular/KC/) is one of six such subject-

specific centers recently established.  It is jointly managed by our 

labs at Columbia University and by the Broad Institute of MIT 

and Harvard University.   geWorkbench (www.geworkbench.

org), the bioinformatics platform of the MAGNet Center, is one 

of the 4 applications that the Center has been tasked to support; 

the other three are (1) caArray (https://array.nci.nih.gov/), 

a microarray gene expression data repository developed by 

NCI, (2) GenePattern (www.genepattern.org), a data analysis 

platform, and (3) caIntegrator (http://caintegrator-info.nci.nih.

gov/), a framework for enabling the correlated (“translational”) 

analysis of clinical and laboratory data. The Center maintains 

and monitors user and developer forums, a Wiki site offering 

documentation and support for the four applications, a 

community bug tracking and feature request system, and a 

knowledge base comprising articles that describe in detail how 

to address common technical and analysis issues.  The Center’s 

mission, as with each of the Knowledge Centers, is to serve as an 

authoritative repository of knowledge and information about the 

supported tools and technologies.

Community-Driven Knowledge 
Sharing for the Discovery and 
Visualization of Workflows in 
geWorkbench
GAIL KAISER LAB
We are investigating knowledge sharing for computational 

scientists, demonstrated in a prototype called genSpace 

that is implemented as an add-on to MAGNet’s geWorkbench 

(http://www.geworkbench.org).  It is expected that scientists 

collaborating in the same lab on the same project share: Data 

(specimens, samples, materials, analyses), Tools (instruments, 

software, hardware), and most significantly Knowledge (open 

discussion, whiteboard). Our primary motivation is to address 

the temporal (time) and physical (space) constraints preventing 

this model from scaling to communities of scientists working 

on different projects but who could potentially learn from each 

other’s expertise, experience, etc. and thus produce better 

results for humanity.

Most current generation Computer-Supported Cooperative Work 

systems enable data sharing and/or tool sharing (e.g., PNNL 

Collaboratories, UIUC BioCoRE). But knowledge sharing (how/

when/where/why to use tools and data) has previously been 

limited to labor intensive approaches such as publications, email 

mailing lists, wikis, spontaneous on-line or real-world chats, etc.  

Our scientists already have too many demands on their time.  

We instead seek to enable automatic knowledge sharing that 

requires zero “extra work”.

Our approach leverages the now very popular, and intuitively 

easy to use, social network concepts such as collaborative 

filtering (“people like you …”) to disseminate knowledge on how 

best to use geWorkbench and its numerous integrated analysis 

and visualization tools.  

genSpace logs, aggregates, and data mines geWorkbench users’ 

activities to recommend what have proven through frequent 

use to be the most useful tools and tool sequences (workflows). 

Individual users can opt-in or opt-out to activity logging as 

desired, e.g., due to privacy or confidentiality concerns, but 

still obtain recommendations based on activities by other users. 

genSpace can answer the following questions that a novice, or 

even intermediate to expert, geWorkbench (or analogous analysis 

tool integration system) user might ask: 

What do I do first?

Which tools work well together?

•

•
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Where does this tool fit in a typical workf low?

Who do I know who also uses this tool?

How can I get help (from an expert who is online right now)?

Further information is available at http://www.psl.cs.columbia.

edu/genspace.  

Using geWorkbench to Access the 
TeraGrid Infrastructure

ARIS FLORATOS LAB
The TeraGrid (http://www.teragrid.org/) is operated by a 

consortium of National Laboratories and universities, and uses a 

high-speed network to share major computing and data resources 

(with access to more than 750 Teraf lops of computing power and 

30 Petabytes of online and archival storage).  It is currently the 

largest such “cyber-infrastructure” for open scientific research.  

caGrid (www.cagrid.org), is the grid middleware layer of the 

caBIG® initiative. caGrid, built on some of the same underlying 

technologies as the TeraGrid, provides a number of enhancements 

to promote the exposure and reuse of clinical and laboratory data 

through its emphasis on shared data models and adherence to 

data interchange standards.  As such, the caGrid infrastructure 

currently focuses more on data and security than on computing 

power.  Christine Hung from our lab worked closely with Ravi 

Maduri of the University of Chicago/Argonne National Labs 

and others to develop and demonstrate a gateway that provided 

a secure mechanism to transfer caGrid computing jobs to the 

TeraGrid.  This facility can be used to give researchers access to 

the raw computing power of the TeraGrid when required.  In the 

project, geWorkbench was utilized as the front end user interface 

tool, and a caGrid service was developed that provided access to 

a TeraGrid job queue.  A geWorkbench hierarchical clustering 

algorithm was placed on the TeraGrid host.  The entire process 

from launching a caGrid job using geWorkbench to running 

the job on the TeraGrid and retrieving the results for display 

in geWorkbench was successfully demonstrated at the caBIG® 

2008 Annual Meeting.

This project is described in full detail in a paper presented at 

Teragrid’08 http://www.teragrid.org/events/teragrid08/Papers/

papers/100.pdf.

Modeling noise in transcriptional 
regulation: information flow in 
regulatory cascades

CHRIS WIGGINS LAB
The past decade has seen great advances in our understanding 

of the role of noise in gene regulation and the physical limits to 

signaling in biological networks. In recent work (Aleksandra 

•

•

•

M. Walczak, Andrew Mugler, Chris H. Wiggins, “A stochastic 

spectral analysis of transcriptional regulatory cascades”, 

PNAS 2009, to appear) we introduced a spectral method for the 

computation of the joint probability distribution over all species 

in a biological network. The spectral method exploits the natural 

eigenfunctions of the master equation of birth-death processes 

to solve for the joint distribution of modules within the network, 

which then inform each other and facilitate calculation of the 

entire joint distribution. We illustrate the method on a ubiquitous 

case in nature: linear regulatory cascades. The efficiency 

of the method makes possible numerical optimization of the 

input and regulatory parameters, revealing design properties 

of, e.g., the most informative cascades. We find, for threshold 

regulation, that a cascade of strong regulatory events converts 

a unimodal input to a bimodal output, that multimodal inputs 

are no more informative than bimodal inputs, and that a chain 

of up-regulations outperforms a chain of down-regulations. 

We anticipate that this numerical approach may be useful for 

modeling noise in a variety of small network topologies in 

biology.

We are collaborating with the laboratory of Prof. David Miller 

at Vanderbilt University, who uses pioneering cell-sorting 

and microarray-based technologies to profile mRNA isolated 

from individual neurons, gradually expanding our knowledge. 

Using the limited existing knowledge, we already have 

some preliminary results, and we are currently using novel 

computational techniques that we developed to identify sets of 

genes that are synergistically interacting with respect to synapse 

formation. 

Grid-Enablement of Bioinformatics 
Workflows

ARIS FLORATOS LAB

The caBIG® Integrative Cancer Research Workflow Working 

Group (led by Kiran Keshav, a member of our lab) is chartered 

with developing useful workf lows from available caGrid-enabled 

data and analytical services.  The group’s first proof of concept 

project was to implement a microarray-based workflow drawing 

gene expression data from caArray (https://array.nci.nih.gov/), 

performing preprocessing using a GenePattern (http://www.

genepattern.org/) grid service, and then running hierarchical 

clustering using a grid-enabled geWorkbench component.  More 

recently, the group demonstrated a proteomics workflow using 

the Computational Proteomics Analysis System (CPAS, https://

proteomics.fhcrc.org/CPAS/), the Protein Information Resource 

(PIR), and caBIO (https://cabig.nci.nih.gov/tools/cabio), 

a caBIG® programmatic interface for accessing biological 

information.
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Additionally, the Workflow Working Group investigated workflow 

authoring and invocation using the Taverna Workbench (http://

taverna.sourceforge.net/).  The group has worked with the 

caGrid development team to prototype a workflow authoring tool 

to enable the orchestration, discovery and invocation of caBIG® 

grid services and has provided the caBIG® community with 

guidelines for creating workflows as well as feedback on tool and 

process enhancements.  All artifacts from the Workflow Working 

Group can be found on the Gforge website at http://gforge.nci.

nih.gov/projects/workflow/. 

The GERMLINE algorithm dissects 
recent population structure by hidden 
relatedness

ITSIK PE’ER LAB 
Itsik Pe’er’s Lab recently developed GERMLINE, a robust 

algorithm for identifying segmental sharing indicative of recent 

common ancestry between pairs of individuals. GERMLINE 

efficiency, orders of magnitude better than previous methods, 

facilitates analysis of high throughput data: thousands of 

samples genomewide. Application of this method to current 

datasets facilitates novel insights on recent effects on population 

structure, based on the fact that pairs of individuals from closely 

inbred populations are more likely to share significant chunks 

of their genomes due to recent common ancestry. This is clearly 

demonstrated by the analysis of 1000 samples from the New 

York Health Study, a public-access dataset hosted by C2B2 

within the Intragen database (IntragenDB, http://intragen.

c2b2.columbia.edu/). A connected component emerges that 

essentially identifies the individuals self-reported as Ashkenazi 

Jewish (blue), separating them from other New Yorkers with 

European ancestry (green). This is expected from random graph 

theory given a difference in average degrees between nodes 

representing individuals of different ethnic groups. Inclusion of 

Ashkenazi samples collected by the Hebrew University Genetic 

Resource (cyan) confirms this analysis. PhD student Sasha 

Gusev, the developer of GERMLINE and MSc student Pier 

Palamara were able to use the population-specific chance of 

hidden relatedness to observe geographic separators between 

clusters of different populations. Furthermore, the locations 

of these segments that are shared between individuals without 

recombination are focused at specific loci, including the HLA 

and large CNV regions, suggesting a biological mechanism for 

conservation of intact haplotypes.

Adding Semantic Dimension to 
Ranking of PubMed Search Results

KENNETH ROSS LAB
An ever-increasing amount of data and semantic knowledge 

in the domain of life sciences is bringing about new data 

management challenges.  Many life sciences researches search 

PubMed as part of their daily activities. With the number of 

articles in PubMed growing from year to year, and with many 

queries returning thousands of high-quality matches, there is a 

clear need for relevance ranking of results. Such ranking is not 

currently available in PubMed.

Kenneth Ross and his students Julia Stoyanovich and William 

Mee are developing a system that will add the semantic 

dimension to literature search.  Their system incorporates 

Figure 1: A caGrid workflow defined in TAVERNA.

Figure 1: GERMLINE analysis of IntragenDB samples clearly 
separates Ashkenazi Jews (blue) from other New Yorkers with 

European ancestry (green). 
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several families of novel ranking functions that use MeSH 

annotations to determine the relevance of an article to a user’s 

query.  The system implements novel adaptive algorithms that 

compute the ranking efficiently on the scale of PubMed.

When complete, the system will allow ranked browsing, and will 

also provide a two-dimensional visualization of results that plots 

article relevance against publication date.

Figure 1: Two-dimensional Skyline visualization of results for the 
query “G-Portein-Coupled receptors”.  Document publication date 
is plotted on the x-axis, while semantic query relevance  is plotted 
on the y-axis. Higher values of query relevance correspond to better 
matches.
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