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2012 is an exciting year for the national Center for Multiscale Analysis of Genomic and Cellular Networks (MAGNet) 
at Columbia University. It is our seventh anniversary of successful growth and marks the first step to create a new 
Department of Systems Biology (DSB) at Columbia, which is the direct result of the success of MAGNet center related 
activities. The new Department will provide a collaborative environment across disciplines to advance our study of 
human disease. We already welcome four new faculty members who will be appointed in the DSB upon its creation, 
including Dr. Saeed Tavazoie, who joins us from Princeton at the full professor level, and Drs. Sagi Shapira, Yufeng Shen, 
and Peter Sims, who join us at the Assistant Professor level.  MAGNet plays a central role in providing   computational 
tools, methodologies, and information databases for the research community to investigate biological processes 
and disease states. Additionally, through our expanding infrastructure, we will continue to encourage scientific 
collaborations that benefit research centers and organization all over the world. 

In an effort to keep you abreast of the accomplishments of MAGNet researchers, this issue highlights the results from 
three out of many articles recently published by MAGNet investigators. Consistent with the mission of MAGNet, each 
of these studies have contributed to the creation of novel computational tools that dissect and interrogate cellular 
and genomic network models to produce novel, biologically relevant hypotheses that were experimentally validated. 

Our first feature article, published in Nature Precedings by Dr. Dimitris Anastassiou and collaborators, introduces 
a unique molecular signature common to many types of highly invasive solid tumors. Characterizing the genetic 
profiles of such tumors is important, since most cancer deaths result from progression to metastatic disease. While 
the biological mechanisms underlying metastatic progression remain largely elusive, there is increasing evidence 
suggesting a connection with a cancer specific epithelial-mesenchymal transition (EMT) that increases invasion 
potential. The gene expression signature proposed by Dr. Anastassiou and colleagues provides a unifying framework 
to study EMT transition in most invasive tumor types. This signature was discovered by computational analysis of gene 
expression patterns and was validated experimentally, in vivo, using a mouse xenograft model. Specifically, human 
cancer cells were implanted in immunocompromised mice to observe the complete tumor life cycle from proliferative 
disease to metastatic progression.  In brief, the new signature includes many EMT markers, including transcription 
factor Slug, fibronectin, and a-SMA. Its presence has been confirmed in different cancer types by studying a variety 
of publicly available datasets and can be potentially used to identify diagnostic biomarkers, as well as candidate 
targets to abrogate metastatic progression. 

The second feature article, published in Nature by Dr. Saeed Tavazoie’s group, examines post-transcriptional 
regulation of mammalian RNA by developing a computational regulatory model. Specifically, the article introduces 
the TEISER algorithm (Tool for Eliciting Informative Structural Elements in RNA), to predict structural motifs in RNA that 
are important for its stability and regulation and that are universally informative across all RNA transcripts. These 
predictions were then experimentally validated to support their functional and regulatory roles. For instance, they 
identified HNRPA2B1, a human gene whose binding to one of their predicted structural RNA elements, sRSM1 (structural 
RNA Stability Motif-1), is crucial for the regulation of other target genes. The TEISER algorithm constitutes a significant 
addition to our repertoire of computational tools that can be used to study post-transcriptional regulatory networks. 

Utilizing a similar approach, the third and final Feature article in this newsletter, published in Cell by a team of postdocs 
and graduate students in Dr. Califano’s lab led by Dr. Sumazin, combines computational tools with biological research 
methods to characterize a novel microRNA (miR) mediated regulatory network.  mRNA and miR expression data 
obtained from The Cancer Genome Atlas was analyzed using a newly developed HERMES algorithm. This revealed 
an extensive network in which pairs of competing endogenous RNA species (ceRNA) can regulate each other 
by sequestering miRs that target both species depending on their expression.  These findings were experimentally 
confirmed and were shown to explain a significant component of PTEN expression variability in glioblastoma as a result 
of deletions of 13 ceRNA competing with PTEN. They propose an important role for genes never before associated with 
the disease and provide mechanistic insight into the depth gene regulation.  This computational approach can also 
be applied to other biological abnormalities that result from RNA-RNA interactions and cause disease. 

Collectively, the research investigations summarized above support MAGNet’s broader goal of creating computational 
models of processes aimed at preventing disease, improving diagnostics and providing more therapeutic options. 
The integration of experimental biology with mathematical modeling results in fresh insights and new approaches 
to the management of diseases such as cancer. Our new department, which uniquely benefits from the success of 
MAGNet, will allow for the collaboration among clinicians and researchers from a variety of fields including oncology, 
mathematics, physics, information technology, imaging sciences, and computer science. 

We look forward to another successful and productive MAGNet year.

 

 --Andrea Califano

inTRoDUcTion
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A MESENCHYMAL TRANSITION 
SIGNATURE PRESENT IN INVASIVE 
SOLID CANCERS

DIMITRIS ANASTASSIOU
DEPARTMENT OF ELECTRICAL ENGINEERING, COLUMBIA UNIVERSITY 

INTRODUCTION
About two years ago we realized that a particular precise set of genes appeared to be coordinately 

and strongly overexpressed in some samples from all types of solid cancers [1]. These genes were 
significantly overexpressed only in samples that had exceeded a particular stage of invasiveness, 
specific to each cancer type. For example, this phenomenon occurred when ovarian cancer 
progressed to Stage III, colon cancer progressed to Stage II, and ductal carcinoma in situ (DCIS) 
progressed to invasive ductal carcinoma (IDC). Prominent among these genes were collagen 
COL11A1 and thrombospondin THBS2. Collagen COL11A1 is the best proxy of the whole signature 
in the following sense: Identifying the genes whose expression was most associated with that of 
COL11A1 consistently included all the other key genes of the signature somewhere at the top of the 
list, better than any other choice. And furthermore this association was true in all solid cancer types 
that we tried (glioblastoma being the only exception – more on that later), but never in data sets of 
normal samples. So, we analyzed many data sets from many cancer types and ended up with the list 
of the top genes of this “universal” cancer signature shown in Table 1 as those being most associated 
with COL11A1 in all datasets.    

It is easy to confirm all of this. For example, we can just go to Supplementary Data 3 of a paper 
[2] comparing the gene expression of DCIS vs. IDC and then “sort largest to smallest” the genes in 
the “up in IDC” sheet of the Excel file in the column showing the fold change. The resulting list of 
top genes starts from COL11A1, COL10A1, MFAP5, LRRC15, INHBA, FBN1, SULF1, GREM1, COL5A2, LOX, 
COL5A1, THBS2. All 12 of them are in the list of Table 1. We can do the same in ovarian or colon cancer 
datasets using the staging thresholds mentioned above, and we will find similar results. Or, we can 
take the list of genes in Table 1 and use it as input for Gene Set Enrichment Analysis (GSEA) provided 

Rank Gene Rank Gene Rank Gene Rank Gene
1 COL11A1 17 FN1 33 LOXL2 49 COPZ2
2 THBS2 18 AEBP1 34 COL6A3 50 NOX4
3 COL10A1 19 SULF1 35 MXRA5 51 EDNRA
4 COL5A2 20 FBN1 36 MFAP5 52 ACTA2
5 INHBA 21 ASPN 37 NUAK1 53 PDGFRB

6 LRRC15 22 SPARC 38 RAB31 54 RCN3
7 COL5A1 23 CTSK 39 TIMP3 55 SNAI2
8 VCAN 24 TNFAIP6 40 CRISPLD2 56 C1QTNF3
9 FAP 25 HNT 41 ITGBL1 57 COMP
10 COL1A1 26 EPYC 42 CDH11 58 LGALS1
11 MMP11 27 MMP2 43 TMEM158 59 THY1
12 POSTN 28 PLAU 44 SPOCK1 60 PCOLCE
13 COL1A2 29 GREM1 45 SFRP4 61 COL6A2
14 ADAM12 30 BGN 46 SERPINF1 62 GLT8D2
15 COL3A1 31 OLFML2B 47 DCN 63 NID2
16 LOX 32 LUM 48 C7orf10 64 PRRX1

 Table 1: COL11A1 associated gene signature
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by the Broad Institute against the Molecular Signatures Database (MSigDB) (www.broadinstitute.org/
gsea/msigdb). The results will include many “hits” with P value exactly equal to “zero.” Among those 
(with “P = 0e0”), there will be many occurrences of sets of genes expressed in higher-stage samples 
from many cancer types, such as nasopharyngeal, head and neck, urothelial, lymphomas, etc. 
Following are some examples: 

None of these cancer types had participated in any way whatsoever in the derivation of the 
signature. This validation of the signature by pointing to all kinds of cancer types in MSigDB suggests 
that the signature may reflect a universal biological mechanism present in the invasive stage of all 
solid cancers.

SO, WHAT DOES THIS SIGNATURE REPRESENT?
It so happens that many among the genes in Table 1 are known markers of a cell transdifferentiation 

process known as epithelial mesenchymal transition (EMT). It is believed that EMT is a key mechanism by 
which cancer cells lose cell adhesion and become migratory and invasive [3, 4] as a result of obtaining 
mesenchymal traits. Similar mechanisms are employed during early embryonic development, so it is 
also believed that EMT-based cancer cell invasiveness is achieved by reactivating such preexisting 
programs. So, it appeared that this signature is due, at least in part, to some cells having undergone 
an EMT. 

It is tempting to hypothesize that the cancer cells themselves undergo an EMT at a particular stage 
of invasiveness, expressing the mesenchymal genes of the signature, such as fibroblast activation 
protein (FAP) and alpha-SMA (ACTA2). But these are genes typically expressed by fibroblasts, which 
are mesenchymal cells known to be part of the stroma, the connective tissue in the microenvironment 
adjacent to the tumor. Could it be that the cancer cells transform themselves into motile fibroblasts, 
and the signature is due to them? This is a controversial hypothesis, but the cancer research pioneer 
Bob Weinberg himself had made the following statement in his follow-up of the classic “Hallmarks 
of Cancer” paper [5], coauthored by Douglas Hanahan: “An EMT can convert epithelial carcinoma 
cells into mesenchymal, fibroblast-like cancer cells that may well assume the duties of cancer-
associated fibroblasts (CAFs) in some tumors.” Weinberg also writes in his book [6] that “In order to 
invade adjacent cell layers,  carcinoma cells are required to remodel the nearby tissue environment 
by excavating passageways through the extracellular matrix (ECM) and pushing aside any cells 
that stand in their path.” The genes of Table 1 fit this scenario quite well: they contain proteases, 
fibronectin, collagens, proteoglycans, a good recipe for remodeling the adjacent connective tissue 
and allowing the cancer cells to go through.

A more reasonable hypothesis would be that the signature is produced by CAFs that originate from 
other sources, maybe the bone marrow, or just the local stroma. Indeed, similar signatures have 

MSigDB Gene Set name Description
SENGUPTA_NASOPHARYNGEAL_CARCINOMA_UP       

[286]
Genes up-regulated in nasopharyngeal carcinoma 

relative to the normal tissue.
GRUETZMANN_PANCREATIC_CANCER_UP [346] Genes up-regulated in pancreatic ductal 

adenocarcinoma (PDAC) identified in a meta-analysis 
across four independent studies.

LINDGREN_BLADDER_CANCER_CLUSTER_2B [389] Genes specifically up-regulated in Cluster IIb of 
urothelial cell carcinoma (UCC) tumors.

PICCALUGA_ANGIOIMMUNOBLASTIC_LYMPHOMA_ 
MA_UP [207]

Up-regulated genes in angioimmunoblastic 
lymphoma (AILT) compared to normal T lymphocytes.

VECCHI_GASTRIC_CANCER_ADVANCED_VS_EARL 
ARLY_UP [167]

Up-regulated genes distinguishing between two 
subtypes of gastric cancer: advanced (AGC) and 
early (EGC).

CROMER_TUMORIGENESIS_UP [44] Tumorigenesis markers of head and neck squamous 
cell carcinoma (HNSCC): up-regulated in the ‘early’ 
tumors vs. normal samples.

 

Table 2: Cancer related MSigDB gene sets highly enriched in genes from Table 1.
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been labeled “stromal” because they were actually found in the stroma, as opposed to the tumor, 
after using laser capture microdissection to separate the tissues. Any presence of a mesenchymal 
signature inside the tumor could then be explained by “stromal infiltration” in the tumor. 

But could it be that the truth is precisely the opposite? In other words, could it be that the presence 
of a mesenchymal signature inside the tumor is genuine as cancer cells start undergoing an EMT, but 
the strong presence of the signature of Table 1 in the stroma is due to the cancer cells themselves 
having invaded the stroma after undergoing a full fibroblastic transition? 

Figure 1: 29 of the genes in Table 1 are found to be strongly co-expressed in human cells (top panel). Further, the 
expression of these genes is anti-correlated with the expression of adipocyte markers in the peritumoral mouse tissue.
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To try to find out, we collaborated with a team of medical researchers at Columbia including Dr. 
Jessica Kandel and Dr. Darrell Yamashiro, who had extensive experience in performing xenograft 
experiments, i.e., implanting human cancer cells in immunocompromised mice, so that the human 
tumors can be observed and scrutinized as they grow, invade the mouse stroma, and eventually 
metastasize.

HUMAN CANCER CELLS EXPRESS THE MESENCHYMAL 
TRANSITION SIGNATURE IN VIVO
The signature is clearly present in publicly available datasets of nonepithelial cancers such as 

neuroblastoma, and since the team had particular experience in these tumors, we decided to use 
human neuroblastoma cell lines in a total of 18 mice. The tumors were harvested at the proper time 
and were then profiled twice separately, using microarrays with species-specific probes for either 
human or mouse. Luckily, there was minimal or zero cross-species hybridization for the genes of the 
signature, as evidenced by the fact that their pairwise correlation across species was almost always 
negative.

Remarkably, most of the genes of the signature were found [7] to have been clearly overexpressed 
in some samples, but only in the human cells, and never in the mouse cells. And COL11A was also a 
good proxy for the other genes, including the key gene THBS2, as well as mesenchymal markers such 
as fibronectin and alpha-SMA, as well as the EMT inducing transcription factor SNAI2 (aka Slug). In 
fact, none of the other EMT-inducing transcription factors was upregulated, only Slug. But none of this 
had occurred in the mouse cells. Clearly, the human cancer cells had undergone a mesenchymal 
transition, which represents a more general process than what EMT is assumed to be, because the 
cells were not epithelial. 

Figure 1 shows this coexpression in a heat map of some of these genes in the human cells of the 18 
samples.  It also shows that there is a strong correlation between the up-regulation of the signature 
genes in the human cells with a down-regulation of adipocyte (fat cell) markers, such as FABP4 and 
ADIPOQ, in the peritumoral mouse tissue. This correlation leads to the hypothesis that contextual 
microenvironmental interactions between cancer cells and peritumoral adipocytes contribute 
to a full transdifferentiation of the cancer cells into alpha SMA producing fibroblast-like cells (just 
as Hanahan and Weinberg wrote), which also secrete the key marker, collagen COL11A1. This 
contextual interaction has already been proposed [8], and it involves the expression of gene MMP11 
(prominently included in the signature of Table 1) from the adipocytes. Consistently, we did not find 
MMP11 upregulated in the human cells. 

This also explains why the mesenchymal transition signature in glioblastoma does not include the 
coexpression of COL11A1: there is no significant presence of adipocytes in the brain. However, the 
signature is still clearly present in glioblastoma, and in fact, as we recently found [9] by analyzing 
the dataset from  The Cancer Genome Atlas (TCGA), it is associated with time to recurrence: All 
patients who had exceptionally long time to recurrence following successful treatment, also had 
exceptionally low levels of the signature. This is consistent with the concept [10] that EMT induces 
cell “stemness” (ability to self-renew as well as differentiate), so that the cells that did not have the 
signature had the least stemness, thus making tumor recurrence more unlikely. There are several 
other related results that we have found, which have been deposited in a preprint [11].

So, it appears that this precise cancer mesenchymal transition signature of Table 1 is present in solid 
cancers of all types, with the necessary condition that it can be found in significant amounts only if 
the tumor has exceeded a particular invasive stage. The signature may or may not be detected in 
samples that have reached or exceeded this invasive stage. However, the absence of the signature 
in a particular high-stage sample does not necessarily imply that the signature had not been present 
earlier in time or at some other neighboring location in the heterogeneous [12] tumor (in fact we saw 
evidence of this heterogeneity in our own xenografts). It is also unclear to what extent the underlying 
mechanism of mesenchymal transition is causal for invasion and metastasis. It is conceivable, 
however, that, at least in some cases, it plays a causal role, leading to the exciting possibility that its 
inhibition may lead to reduction of recurrence and metastasis applicable to multiple cancer types.

REFERENCES:
1. Kim, H., Watkinson, J., Varadan, V. & Anastassiou, D. Multi-cancer computational analysis reveals invasion-

associated variant of desmoplastic reaction involving INHBA, THBS2 and COL11A1. BMC Med Genomics 3, 51 (2010).
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DISCOVERING THE REGULATORY 
PROGRAMS UNDERLYING 
MAMMALIAN TRANSCRIPT STABILITY

HANI GOODARZI1,2AND SAEED TAVAZOIE2

1LABORATORY OF SYSTEMS CANCER BIOLOGY, ROCkEFELLER UNIVERSITY
2DEPARTMENT OF BIOCHEMISTRY AND MOLECULAR BIOPHYSICS, AND SYSTEMS 

BIOLOGY INITIATIVE, COLUMBIA  UNIVERSITY 
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Figure 1. Efficient representation of structural elements. Each structural 
motif is defined as a series of context- free statements that define the 
structure and sequence of the motif. A context-free grammar is a set 
of production rules that describes how phrases are made from their 
building blocks. Considering a structured RNA molecule as a phrase, 
its potential building blocks are the different base pairs and bulges 
(or loops). Internal loops can be represented as a combination of left 
and right bulges in the middle of phrases. The context-free grammar 
that we have used to represent structural motifs contains the following 
production rules: S→S[AUCGN], S→ [AUCGN]S, S→ [AUCGN]S[AUCGN]; 
wherein the first production rule depicts a right bulge, the second 
production rule results in a left bulge, and the third production rule 
creates a base-pairing. In this figure, we have provided the production 
rules for an exemplary motif.

In many aspects, RNA is a unique biological molecule. In addition to their role as information carriers, 
RNA molecules are capable of forming complex folds, where base-pairing between nucleotides 
create simple secondary structures (e.g. stem-loops) and higher order interactions between distal 
sequences form more complex tertiary structures. RNA structures affect a variety of cellular processes, 
such as splicing, localization, translation and RNA stability [1, 2]. Thus, developing real-world dynamical 
models of cellular behavior in large part relies on decoding post-transcriptional regulatory programs 
in RNA. Despite recent efforts [2-4], the vast landscape of RNA regulatory elements remains poorly 
characterized, mainly due to shortcomings in our ability to systematically explore the RNA secondary 
structures with important roles in regulatory interactions. As such, a full characterization of post-
transcriptional regulatory programs relies on effective capturing of both local secondary structures 
as well as the underlying primary sequences that define post-transcriptional regulatory elements and 
their interactions [2, 5].

A number of approaches have been developed to tackle this challenging problem. These methods 
rely on free energy minimization, local sequence alignments or a combination of both alignments 
and secondary structure predictions to identify putative structural elements (also called structural 
motifs) [2, 5, 6]. However, in silico predictions ignore the conducive role of RNA binding proteins and 
complexes in facilitating the formation of certain secondary structures in vivo. We therefore sought 
to bypass the need for predicting structures by efficiently enumerating a large space of potential 
structural motifs. Based on this strategy, we developed TEISER (Tool for Eliciting Informative Structural 
Elements in RNA) that systematically explores the space of possible small stem-loops and reveals 
structural motifs that explain different aspects of experimentally observed RNA behavior [7]. In this 
approach, stem-loops are represented as context-free grammars that provide a principled data 
structure for efficient handling of both structure and sequence components (Figure 1) For example, in 
a whole-genome transcript stability dataset, TEISER discovers structural motif in 5’ and 3’ untranslated 
regions (UTRs) that are strongly correlated with the stability of target mRNAs.

In order to evaluate TEISER, we chose to focus on a single factor in RNA metabolism, namely mRNA 
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decay, and insulate it from other aspects (e.g. transcription rate).  For transcript stability measurements, 
we used a non-invasive and powerful pulse-chase experiment based on the seamless incorporation 
of 4-thiouridine (4sU) into cellular RNA. In this method, cells are incubated with 4sU for a short period, 
which labels the transcripts produced during this period. Removing 4sU from the media marks 
the beginning of a time-series experiment in which, at every time point, the fraction of the mRNA 
population that remains labeled is identified. Using this information, a relative decay rate can be 
calculated for each transcript based on the rate at which labeled transcripts are replaced by newly 
synthesized unlabeled mRNAs in the population.

Analyzing this dataset of mRNA decay rates using TEISER, we successfully identified and characterized 
eight highly significant structural elements that are strongly correlated and most likely causally 
involved in mRNA stability see(Figure 2). These putative regulatory elements show a variety of other 
characteristics that support their functionality. For example, some of these motifs are correlated with 
transcript stability in mouse [8]. They are also highly conserved between human and mouse genomes 
[7].

To biologically validate our findings, we chose sRSM1 (structural RNA Stability Motif-1) for further 
analysis and thorough functional characterization. We used a state-of-the-art approach based 
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Figure 2. Discovery of RNA structural motifs informative of genome wide transcript stability. Each RNA structural 
motif is shown along with its pattern of enrichment/depletion across the range of mRNA stability measurements 
throughout the genome. The transcripts are partitioned into equally populated bins based on their stability 
measures, going from left (highly stable) to right (unstable). In the heatmap representation, a gold entry 
marks the enrichment of the given motif in its corresponding stability bin, while a light-blue entry indicates 
motif depletion in the bin. Red and blue borders mark highly significant motif enrichments and depletions, 
respectively. Included are the motif names, their location (5’UTR or 3’UTR), their sequence information and a 
structural illustration of each motif generated using the following single letter nucleotide code: Y=[UC], R=[AG], 
K=[UG], M=[AC], S=[GC], W=[AU], B=[GUC], D=[GAU], H=[ACU], V=[GCA] and N=any nucleotide.
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on mass spectrometry [9] to discover candidates that bind, in vitro, to the chemically synthesized 
double-stranded oligonucleotides carrying instances of sRSM1, but not to oligonucleotides with 
randomly shuffled versions of the motif. Through this approach, we identified HNRPA2B1 as a promising 
trans-acting factor that binds sRSM1 and regulates the stability of its targets in vivo. We subsequently 
showed that knocking down HNRNPA2B1 results in a significant decrease in the expression level of 
sRSM1 transcripts and confirmed that this down-regulation is due to changes in stability where sRSM1 
targets show a marked increase in their decay rates [7].

In order to show that HNRNPA2B1 directly interacts with sRSM1 target genes in vivo, we took 
advantage of a method based on cross-linking and immunoprecipitation which, through local UV 
photoreactivity of bases and amino-acids, enables the detection of direct physical interactions [10]. 
We expressed a tagged clone of HNRPA2B1, and after crosslinking, immunoprecipitated this protein 
and the target mRNA molecules that were bound to it (a method called RIP-chip [11]). We observed 
that sRSM1 targets are significantly overrepresented in the immunoprecipitated population, which 
indicates a direct interaction between mRNAs carrying sRSM1 in their 3’ UTR sequence (Figure 3).  A 
modified version of this approach, followed by high-throughput sequencing (HITS-CLIP [12]), enabled 
us to footprint the sequences that are directly bound by HNRPA2B1 in vivo and show that sRSM1 
elements are significantly overrepresented among the binding sites. These observations clearly 
demonstrate that HNRPA2B1 directly interacts with sRSM1 in vivo and functions to stabilize its target 
transcripts through this regulatory element [7].   A modified version of this approach, followed by 
high-throughput sequencing (HITS-CLIP [12]), enabled us to footprint the sequences that are directly 
bound by HNRPA2B1 in vivo and show that sRSM1 elements are significantly overrepresented among 
the binding sites. These observations clearly demonstrate that HNRPA2B1 directly interacts with sRSM1 
in vivo and functions to stabilize its target transcripts through this regulatory element [7].

Early on we realized that sRSM1 is a very abundant motif, likely functional in about 4,000 transcripts. 
HNRNPA2B1, which is also highly expressed in the cell, is a suitable binding partner. However, such a 
large regulon implies that modulation of HNRNPA2B1 expression and/or activity could result in far-
reaching effects on a variety of biological processes. Indeed, we observed that knocking down this 
protein results in a slight (~10%) but significant increase in growth rate.

The addition of TEISER to our arsenal of computational tools enabled us to create a powerful pipeline 
for studying post-transcriptional regulatory networks. This approach, outlined in Figure 4 , relies on 
the identification of regulatory elements, their functional interactions and downstream targets to 
portray a comprehensive picture of regulatory networks. In this case, in parallel to TEISER, we used a 
computational platform called FIRE [4] to discover linear regulatory elements (i.e. sequence motifs 
based on nucleotide preferences at each position) whose presence or absence is strongly correlated 
with mRNA stability. We identified a large set of lRSMs (linear RNA Stability Motifs), including six known 
microRNA recognition sites that, combined with the structural motifs identified through TEISER, 
comprise a large set of RSMs with potentially key roles in post-transcriptional regulation. Identifying 
post-transcriptional regulatory elements, however, is only the first step in deciphering the post-
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Figure 3. HNRPA2B1 directly binds sRSM1 targets in vivo. Using UV-crosslinking followed by immunoprecipitation, 
mRNAs that bind HNRPA2B1 were extracted and compared against the input mRNA population (RIP-chip). The 
value assigned to each mRNA denotes its abundance in the immunoprecipitated sample relative to the input 
control. Bins to the right contain the mRNAs that were captured as interacting partners with HNRPA2B1. Similar to 
the prior examples, TEISER was used to show the enrichment/depletion pattern of transcripts carrying the sRSM1 
structural motif in their 3’ UTRs. The values associated with each transcript were calculated as the average of log 
ratios from biological replicates.
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transcriptional regulatory program underlying transcript stability. We then used iPAGE [13] to discover 
the cellular pathways and processes that are likely targeted and modulated by each element [7]. For 
example, we observed that sRSM1 is significantly overrepresented in the 3’ UTRs of the genes involved 
in “Notch signaling”, while avoiding the UTRs of other pathways such as “nucleosome assembly”.

Biological networks function, in large part, through direct and indirect interactions between 
regulatory modules. The last step in our analytical pipeline aims at discovering putative interactions 
between the identified regulators. In this context, we defined interaction as a higher than expected 
chance of finding two given elements co-occurring in the same UTRs, or on the negative side, as 
lower than expected chance (i.e. avoidance). For example, in case of sRSM1, we observed significant 
positive and negative interactions with a number of structural and linear motifs, including sRSM8 and 
sRSM3. These interactions reflect cross talk, or insulation, between the underlying regulatory modules 
that interact with these elements.

These results demonstrate that while post-transcriptional regulatory mechanisms are poorly 
characterized, they have potentially far-reaching impact on specific cellular processes. In Figure 5, 
we have included the totality of the predicted interactions discovered in our mRNA stability data. 
It is important to note that we have focused on a single cell-line under static conditions and the 
complete network is most likely significantly more complex and carries more nodes. Nevertheless, 
the majority of these elements and interactions in this study fall outside of what is currently known. 
This regulatory map, and those from other types of biological data, set the stage for molecular 
dissection and predictive modeling of post-transcriptional regulation from sequence. We should also 
emphasize that our computational framework can be easily applied to the discovery of regulatory 
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Figure 5. Predicted post-transcriptional regulatory network underlying transcript stability. Combining results 
from TEISER, FIRE and the regulatory interaction maps, we created a network of dependencies that comprises an 
inferred post-transcriptional regulatory network based on our observations. We also used iPAGE to identify the 
pathways that are likely targeted by the identified elements. In this figure, the red and blue edges show positive 
and negative interactions between structural and linear motifs, respectively. The orange and purple edges show 
the interactions between structural motifs and linear ones, respectively. The pink and light blue edges connect 
each element with its target pathways. A pink edge means that the genes in a given pathway carry the specified 
motif more than expected by chance, whereas, light blue edges show that the motif is under-represented in the 
genes of the corresponding pathway.

elements and interactions underlying other aspects of RNA behavior, including splicing, localization 
and translation.

http://magnet.c2b2.columbia.edu magnet newsletter 12



REFERENCES
1. Barash, Y., J.A. Calarco, W. Gao, Q. Pan, X. Wang, O. Shai, B.J. Blencowe, and B.J. Frey, Deciphering the 

splicing code. Nature, 2010. 465(7294): p. 53-9.

2. Rabani, M., M. Kertesz, and E. Segal, Computational prediction of RNA structural motifs involved in 
posttranscriptional regulatory processes. Proceedings of the National Academy of Sciences of the United States of 
America, 2008. 105(39): p. 14885-14890.

3. Dolken, L., Z. Ruzsics, B. Radle, C.C. Friedel, R. Zimmer, J. Mages, R. Hoffmann, P. Dickinson, T. Forster, P. Ghazal, 
and U.H. Koszinowski, High-resolution gene expression profiling for simultaneous kinetic parameter analysis of RNA 
synthesis and decay. Rna-a Publication of the Rna Society, 2008. 14(9): p. 1959-1972.

4. Elemento, O., N. Slonim, and S. Tavazoie, A universal framework for regulatory element discovery across all 
Genomes and data types. Molecular Cell, 2007. 28(2): p. 337-350.

5. Pavesi, G., G. Mauri, M. Stefani, and G. Pesole, RNAProfile: an algorithm for finding conserved secondary 
structure motifs in unaligned RNA sequences. Nucleic Acids Research, 2004. 32(10): p. 3258-69.

6. Hofacker, I.L., M. Fekete, and P.F. Stadler, Secondary structure prediction for aligned RNA sequences. Journal 
of molecular biology, 2002. 319(5): p. 1059-66.

7. Goodarzi, H., H.S. Najafabadi, P. Oikonomou, T.M. Greco, L. Fish, R. Salavati, I.M. Cristea, and S. Tavazoie, 
Systematic discovery of structural elements governing stability of mammalian messenger RNAs. Nature, 2012. advance 
online publication. doi:10.1038/nature11013

8. Schwanhäusser, B., D. Busse, N. Li, G. Dittmar, J. Schuchhardt, J. Wolf, W. Chen, and M. Selbach, Global 
quantification of mammalian gene expression control. Nature, 2011. 473: p. 337–342.

9. Windbichler, N. and R. Schroeder, Isolation of specific RNA-binding proteins using the streptomycin-binding 
RNA aptamer. Nature Protocols, 2006. 1(2): p. 638-U4.

10. Jensen, K.B. and R.B. Darnell, CLIP: crosslinking and immunoprecipitation of in vivo RNA targets of RNA-binding 
proteins. Methods in molecular biology, 2008. 488: p. 85-98.

11. Keene, J.D., J.M. Komisarow, and M.B. Friedersdorf, RIP-Chip: the isolation and identification of mRNAs, 
microRNAs and protein components of ribonucleoprotein complexes from cell extracts. Nature Protocols, 2006. 1(1): p. 
302-7.

12. Licatalosi, D.D., A. Mele, J.J. Fak, J. Ule, M. Kayikci, S.W. Chi, T.A. Clark, A.C. Schweitzer, J.E. Blume, X.N. Wang, 
J.C. Darnell, and R.B. Darnell, HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature, 
2008. 456(7221): p. 464-U22.

13. Goodarzi, H., O. Elemento, and S. Tavazoie, Revealing global regulatory perturbations across human cancers. 
Molecular Cell, 2009. 36(5): p. 900-11.

MAGNet NeWSLetteR13 SPRING 2012



MAPPING THE MIRNA REGULATORY 
NETWORk IN GLIOBLASTOMA
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INTRODUCTION
Deciphering the molecular processes and networks that drive cellular pathophysiology in complex 

diseases such as cancer has been greatly facilitated by the use of in silico analysis.  Glioblastoma 
Multiforme (GBM), a therapy resistant brain cancer is a prime example, where a molecular network 
controlled by three genes, C/EBPβ, C/EBPδ, and STAT3, appears to be involved in driving the most 
aggressive form of the malignancy, characterized by a mesenchymal phenotype [1]. Despite this and 
other mechanistic studies addressing the etiology of high-grade gliomas, it is increasingly evident 
that some if not most of the genetic mechanisms and variability associated with this disease is still 
elusive and likely mediated by complex regulatory networks. 

MAGNet scientists working on glioma research recently identified a large and previously 
uncharacterized layer of regulation that allows RNA molecules to regulate each other via a hidden 
layer of microRNAs (miRs), through a “sponge” mechanisms first demonstrated in plants [2] and later 
shown to allow interaction between genes and pseudogenes [3]. The fundamental result of the 
Columbia team is that this regulatory mechanism rather than being relegated to pseudogenes is 
ubiquitous and mediates pathogenic events, including downregulation of key tumor suppressors as 
well as upregulation of oncogenes as a result of deletion events by previously unrelated transcribed 
loci. 

Non-coding RNAs (ncRNAs) have been recognized as regulating gene expression at the mRNA 
transcriptional, stability and translational levels with microRNAs being the most widely studied of the 
small ncRNA class. Additionally microRNAs themselves are subject to sophisticated regulation and 
control[4], and altered expression can lead to pathologies and cancer [5].  The term “microRNA 
(miR) sponge” was coined by Phillip Sharp in 2007 to refer to an engineered molecular tool by which 
whole miRNA families could be functionally blocked by effectively sequestering miRNA from their 
endogenous targets[6]. At the time, little was know about naturally occurring miRNA sponges and 
their role in normal or pathological states.  Since then, a few studies have shown roles for endogenous 
miRNA sponges in plants [2] prokaryotes [4] and metazoans [7]. Notably these initial studies introduced 
a fundamentally new dimension in cellular regulation; namely that, between transcription and 
translation lies the domain of protein-coding messenger RNA (mRNA) and non-coding RNA cross 
regulation. We are only beginning to understand the extent to which this cross talk exists in biological 
systems and how dysregulation of miRNA function affect homeostasis of the cell. This is yet another 
realm that is benefiting from network biology approaches.

IDENTIFYING A GENOME WIDE HUMAN GLIOMA MIRNA NETWORk 
USING HERMES
We developed a new algorithm, Hermes, which systematically infers candidate modulators of miR 

activity from large collections of genome-wide expression profiles of both genes and miRs from the 
same tumor samples. Hermes employs multivariate analysis and is an extension of the modulator 
inference by network dynamics (MINDy) algorithm we previously developed and which uses 
measurements from information theory to identify genes that modulate transcription factor activity 
via posttranslational modifications [8]. In essence, MINDy and Hermes make inferences by estimating 
two quantities from information theory: the mutual information (MI) and conditional mutual 
information (CMI). The MI quantifies how much one variable informs about another variable (i.e., 
high MI between two variables implies that knowledge about the first variable is predictive of state 
of the second variable). The CMI calculates the expected value of MI of two variables given the 
third variable. Using Hermes [9] to analyze 262 glioblastoma samples that were patient matched for 
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Figure 1. The mPR network. 

Genome-wide inference of sponge 
modulators identified a miR program-
mediated post transcriptional 
regulatory (mPR) network including 
~248,000 interactions. Its graphic 
visualization uses nodes to represent 
individual RNAs and edges to represent 
miR program-mediated RNA-RNA 
interactions. Nodes near the center of 
the graph are contained within more 
tightly regulated, dense subgraphs, 
with the densest 564 node subgraph 
shown in red at the center of the 
network. The network is scale free, and 
the color bands, which include nodes 
with similar connectivity, have a size 
that increases exponentially with the 
distance from the center.

gene and miRNA expression profiles from The Cancer Genome Atlas (TCGA) [10], we defined a vast 
and previously unknown post-transcriptional miRNA mediated regulatory network in GBM comprising 
more than 248,000 miRNA mediated interactions involving miRNA/mRNA cross talk (Figure 1).

MIRNA ACTIVITY MODULATORS
Previous research has identified individual miRs which have key roles in gliomagenesis and 

progression [11] but very little is know regarding the molecular regulators of miRNA activity on their 
targets. The data obtained from our Hermes analysis strongly indicates that there are a large number 
of genes, which are affected by miR activity modulators that have a prominent significance in GBM.  
We looked at two specific mechanisms by which miR activity is modulated (Figure 2, A and B).  The 
first mechanism, known as the sponge effect, involves the interaction of RNAs of different genes 
through a common miR program. Any changes in the RNA of gene 1 affects the function of the miRs 
that control its interactions with the RNA of gene 2, thus affecting the expression levels/functioning 
of gene 2 as well. The second mechanism, nonsponge modulation consists of protein-protein and 
miR-protein regulation of the miR mediated posttranscriptional apparatus.  Using the miR program-
mediated regulatory network (mPR) obtained from Hermes (Figure 2C), we found that the increase 
in expression of the modulator gene is linked with an increase in the expression of several miRs as well 
as their respective target genes.  Hermes analysis unveiled an astonishing 7,000 gene transcripts (i.e. 
miR “sponges”) and 148 genes involved in nonsponge interactions.

THE GBM MIRNA NETWORk REGULATES ESTABLISHED ONCOGENIC 
PATHWAYS
The mPR regulatory network we have identified facilitates communication between mRNAs and 

microRNAs. We further used this methodology to examine specific genes that have been associated 
with GBM pathophysiology. For this analysis, we chose the phosphatase and tensin homolog gene 
(PTEN) tumor suppressor, down regulation of which is a hallmark of gliomagenesis. A comparable 
range of expression between intact and heterozygous deleted PTEN loci is highly suggestive that its 
expression may be tightly regulated and that a variety of additional mechanisms are capable of 
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Figure 2. miR Activity Modulators: miR activity modulation may be implemented by several distinct mechanisms. We 
consider competition by RNAs for common miR programs (sponge effect) separately from other mechanisms, such as 
those driven by protein-protein or protein-miR interactions.  (A) RNAs modulate each other through their common miR 
regulatory program. Up/down changes to the expression of one RNA perturb the relative abundance of functioning 
miRs that target both RNAs, leading to a corresponding up/downregulation of the second RNA. (B) Nonsponge 
modulators regulate miR activity by assisting or inhibiting components of the miR-mediated posttranscriptional 
regulatory apparatus. These regulators may help or prevent recruitment of miRISC to the target RNA or affect target 
degradation and transport. (C) To identify candidate modulators, we sought out instances in which the correlation 
between the total expression of a miR program and its target is dependent on the expression of a candidate modulator. 
This image visualizes a simplification of the process. The top heatmap shows expression of miRs in a program (rows) 
across all samples (columns) in which the modulator expression is high, with the bottom line showing the total expression 
of the miR program in the sample. Samples are sorted low to high based on miR program expression. Below that is the 
expression of the target of the miR program. The top heatmap shows strong inverse correlation between miR-program 
expression and target expression, consistent with an active miR program. The bottom heatmap shows the same data 
but this time for samples in which modulator expression is low. Here, the negative correlation between miR program 
expression and target expression is reduced, which is indicative of a suppressed miR program.
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down regulating this gene in tumors. 

Studies show that PTEN is controlled by miRs [12], [13]. Interestingly, our computational analysis 
indicates that PTEN participates in a total of 534 interactions in the mPR network and that its expression 
is regulated by the sponge effect, potentially mediated by a large number of regulators. 

We experimentally manipulated a subset of these putative PTEN mPR regulators, whose loci are 
often deleted in patient tumors with an intact PTEN locus (Figure 3). Decreasing their mRNA levels by 
siRNA in cell lines that serve as models for glioblastoma showed a striking decrease in expression of a 
PTEN 3’UTR luciferase reporter. Additionally this regulatory mechanism was symmetrical; expression of 
the PTEN 3’UTR alone induced an increase in the expression of the majority of regulators. Furthermore 
these expression and silencing experiments had effects on the proliferation of the glioblastoma cell 
lines. Transfection of PTEN 3’UTR upregulated the expression of its mPR neighbors, increased PTEN 
(protein) concentration, and reduced tumor cell growth rates. Conversely, siRNA-mediated silencing 
of mPR regulators reduced PTEN 3’UTR-luciferase expression and significantly accelerated SNB19 and 
SF188 cell growth, respectively. 

Thus in analyzing other genes that steer the progression of GBM tumors, 13 are commonly deleted in 
GBM and collaborate through miRs to disturb PTEN expression and functionality. This proves to be as 
deleterious as tumors that have DNA mutations in the PTEN gene.  Moreover, this also partly accounts 
for the genetic variability among GBM patients where a large percent exhibit PTEN negative tumors, 
while others show an intact PTEN but without expression of the gene. The 13 genes that we found 
in the mpR regulatory network of PTEN could be, in part, the cause of PTEN suppression (Figure 3). 

Figure 3. PTEN Expression Is Correlated with the 
Expression of Its mPR Regulators. 

(A) PTEN is targeted by > 500 mPR regulators, and 
its expression is correlated with both their total 
gene expression and with deletions at their loci; 
in aggregate, 97% of the TCGA glioma tumors 
have at least one deletion in a PTEN mPR regulator 
locus. We selected 13 mPR regulators of PTEN with 
enriched locus deletions in PTEN intact tumors. 
As shown, their collective deletions and total 
expression are both significantly correlated with 
PTEN expression (pD < 2 3 10_10 and pE < 5 3 10_23, 
respectively). 

(B) Surprisingly, the correlation between PTEN 
and the aggregate expression across the 13 genes 
is significant in both samples with an intact PTEN 
locus and samples with heterozygous deletions (rD 
= 0.40, pD < 10_9 and rWT = 0.46, pWT < 4 3 10_4 
by Pearson correlation, respectively). The range 
of PTEN expression in PTEN heterozygously deleted 
samples and in samples with an intact PTEN locus 
was virtually the same.

(C) Individual siRNA-mediated silencing of 13 
PTEN mPR regulators reduced PTEN 3’UTR luciferase 
activity in SNB19 cells at 24 hr. Negative control 
targets (in gray) were unaffected.

(D) Ectopic expression of PTEN 3’UTR increased 
expression of 13 PTEN mPR regulators in SNB19 cells 
at 24 hr, compared to empty vector. Negative 
control targets (in gray) were unaffected.

(E and F) Results in SNB19 were replicated in 
SNF188 cells for genes that are expressed in this cell 
line. Fold change was measured by qRT-PCR. Data 
are represented as mean ± SEM.
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The strongly indicates that there are a large number of genes, which are affected by miR activity 
modulators that have a prominent significance in GBM.

Other established genes promoting tumorigenesis and glioma subtype that were tested included 
PDGFRA, RB1, VEGFA, STAT3, and RUNX1, which together form a dense subgraph of mutually mPR 
interacting genes.  These genes have numerous miRNAs in common and in particular, loss of either 
PTEN or RB1 suggests a dramatic cross talk involving a shared miRNA/mRNA subnetwork. Hermes was 
also able to identify 148 nonsponge miRNA modulators. Amongst these we experimentally confirmed 
that several predicted regulators mediated effects on PTEN and RUNX1. 

Taken together, these experimental results confirmed the validity of the software-model-predicted 
mPR network and are highly suggestive of a miR network mediating interactions between established 
oncogenic pathways.  Moreover, they provide a mechanistic explanation for the loss of PTEN 
expression. 
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Featured News

HoX PRoTEinS REVEAL THEiR SEcRETS
RicHARD MAnn, HARMEn BUSSEMAKER, AnD BARRY HoniG LABS
Hox proteins have very similar sequence preferences when binding DNA as a monomer. Mutations 

in the corresponding HOX genes however confer dramatically different phenotypes. MAGNet 
investigators Richard Mann, Harmen Bussemaker, and Barry Honig set out to address this paradox 
using high-throughput sequencing. They developed an integrated experimental and computational 
approach – named SELEX-seq – that can be used to determine binding affinities for all possible 
DNA sequences for any transcription factor complex. Applying this method to each of the eight 
Drosophila Hox proteins in complex with another homeodomain protein named Exd, they showed 
that this co-factor evokes striking differences in DNA binding preference between the eight Hox-
Exd heterodimers (Figure 1). Differences in minor groove shape in the center of the binding seem to 
contribute to this “latent specificity” of Hox proteins.
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Figure 1: Dimerization with Extradentical (Exd) reveals latent DNA binding specificities across the conserved family 
of Hox transcription factors in Drosophila. The sequence logos on the left are from a study by Noyes et al. (2008); the 
“specificity fingerprints” on the right are from Slattery, Riley, Liu et al. (2011).
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Featured News
inFEREncE oF MoDULES REGULATED BY EQTLS
iTSiK PE’ER AnD DAnA PE’ER LABS
Cataloging the association of transcripts to genetic variants can offer significant insights to the 

regulatory structure of human transcription. To find such relationships we have developed a novel 
approach, which entails detection and analysis of modules of transcripts, each co-associated 
with a single genetic variant. First, we search pair-wise connections between transcripts whose 
levels are co-associated with the same SNP. Second, we combine these pairs into modules that 
share an associated main SNP. We then assign a confidence score to each module. Finally, we 
find secondary SNPs whose association to transcript levels in a module is conditioned on the main 
SNP. We applied our method to existing data on genetics of gene expression in the liver. The 
modules we discover are significantly more, larger and denser than those found in permuted data 
(Figure 2). We quantify the confidence in a module as a likelihood score, and prune a subset of 
95 distinct modules with FDR<0.02. We systematically look for cis effects that can explain multiple 
reported modules. We observe similar annotations of modules from two sources of information: 
the enrichment of a module in gene subsets and locus annotation of the genetic variants. This 
and further phenotypic analysis provide a validation for our methodology. 

Figure 2: The number of (a) association pairs (b) modules and (c) large modules in real data compared with 100 
permuted data sets. Although only 93 out of the 100 permuted data sets have fewer association pairs than in the real 
data, all of them have fewer (large) modules. 
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VARiAnTS in EXonS AnD in TRAnScRiPTion FAcToRS AFFEcT GEnE EXPRESSion in 
TRAnS
iTSiK PE’ER LAB
in recent years many genetic variants (eSNPs) have been found to be associated with gene 

expression. However, the causal variants and the regulatory mechanisms by which they act remain 
mostly unknown. Here we present a comprehensive analysis of trans-eSNPs, integrating SNPs that are 
fully ascertained from genomic sequencing data with transcriptional profiling (RNA-seq) in the same 
cohort. When considering interpretable genomic regions containing candidate eSNPs, we observe 
enrichment of such variants in exons. We thus focus on exonic eSNPs, and consider eSNPs within the 
span of Transcription Factors (TFs) for comparison. In both cases, these variants define the spanning 
source gene, along with the respective gene target of association. We map the source and target 
genes onto a Protein-Protein Interaction (PPI) network and study their topological properties.

When considering pairs of eSNP exon source with its corresponding target, the stronger their 
association, the closer they are within the PPI network (permutation p<9.9e-4) and the higher the 
degree of the target (permutation p<0.002). Expression analysis demonstrates that these source–
target pairs are more likely to be co-expressed (p<5.4e-5) and the eSNP tends to have a cis effect, 
modulating the expression of the source gene (p<2.3e-13). In contrast, source-target pairs with a TF 
eSNP are not observed to have such properties. We do observe these latter pairs to reside within 
the same PPI cluster more than expected by chance (permutation p<0.0043), and to assemble 
functionally enriched units of a TF source along with its gene targets. 

Our results suggest two modes of trans regulation: TF variation frequently acts via a modular 
regulation mechanism, with multiple targets that share a function with the TF source. Notwithstanding, 
exon variation often acts by a local cis effect, and propagates through shorter paths of interacting 
proteins across functional clusters of the PPI network.

Figure 3: Examples of TF and exon source-target pairs. TF/exon source and target genes are denoted by blue and 
green circles respectively. The PPI cluster is denoted by a purple cloud. The genomic location of the TF/exon is denoted 
by the blue rectangle, and the eSNP associated to the target genes is marked in red. PPI edges are denoted by black 
solid lines and nodes in the PPI are denoted by black circles. Exonic eSNP interaction is denoted by a solid red line and 
TF eSNP interaction is denoted by a red dashed line. (a) Network motif I1-FFL: TCF7L2 activates MYC (in presence of 
CTNNB1) but also represses MYC by activating the repressor TLE4 (via an eSNP). (b) The shortest path on the PPI network 
between PIDD source and its gene target PLK3. There is a significant correlation between the expression of the source 
and target genes.       
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inTERRoGATinG MoUSE AnD HUMAn PRoSTATE cAncER inTERAcToMES To UnDERSTAnD 
THERAPEUTic RESPonSE 

coRY ABATE-SHEn, MicHAEL SHEn, AnD AnDREA cALiFAno LABS
Last year we introduced in this newsletter a new project in which we have been developing mouse 

and human prostate cancer interactomes that have enabled the first cross-species integration of 
master regulators of therapeutic response for prostate cancer.  The generation of the mouse prostate 
cancer interactome is particularly novel since it was developed in vivo from 13 different and distinct 
strains of mice, each treated with 14 distinct pharmacological perturbations using drugs that are 
relevant for prostate cancer. The human interactome was developed from a published data set with 
extensive clinical outcome data. To effectively link analyses of the mouse interactome, which was 
built on pharmacological perturbations, with that of the human interactome, which was built on 
clinical specimens, we are in the process of developing a human xenograft interactome that will be 
perturbed by the same pharmacological agents as we had used for the mouse interactome. 

We have performed cross species interrogation of the mouse and human interactome to evaluate 
the therapeutic response to drug treatment for alleviating tumor and metastatic burden in a 
mouse model of metastatic prostate cancer. Importantly the cross-species verification has led to 
identification of two master regulators, namely FOXM1 and CENP-F, which synergize to promote 
progressive metastatic prostate cancer and are targeted for drugs that inhibit the metastatic 
phenotype. FOXM1 and CENP-F, which were identified exclusively based on these computational 
cross-species analyses, are expressed robustly in advanced prostate tumors and metastases and are 
predictive of clinical outcome. These findings establish a new paradigm for identification of master 
regulators of drug response based on cross-species interrogation of mouse and human regulatory 
networks with preclinical data from mouse models.

MicRoWELL ARRAYS FoR SinGLE cELL SYSTEMS BioLoGY
PETER SiMS LAB
Microfluidic devices fabricated in polydimethylsiloxane (PDMS) using soft lithography have 

enabled numerous biological applications over the last decade. Simple features like pumps, valves, 
chambers, and channels can be integrated into complex devices to facilitate high-throughput 
experiments in small volumes. We are developing a new tool for single cell transcriptomics that 
capitalizes on the unique properties of one such microfluidic feature - the PDMS microwell array. 
In our latest experiments, we are depositing individual cells in micrometer-scale wells arranged in 
a large array. PDMS is transparent to visible light, and so we can immediately apply conventional 
phenotypic analysis using immunofluorescence or reporter assays on a microscope. Furthermore, 
the microwell array can be reversibly sealed against a flat surface, isolating its contents in a few 
picoliters. By functionalizing the flat surface, we can capture RNA from the lysates of individual cells. 

Coupling microfluidic RNA capture with high-sensitivity fluorescence microscopy will allow detection 
and quantification of the captured transcripts using fluorescent probes, sequencing, or PCR. Both 
digital PCR and multiplex sequencing have recently been demonstrated using the reversibly sealable 
PDMS microwell platform (Men, Fu, Chen, Sims, Greenleaf, Huang, Analytical Chemistry, 2012; and 
Sims, Greenleaf, Duan, Xie, Nature Methods, 2011). Going forward, our ultimate goal is a system that 
directly links phenotypic characterization by optical imaging with genome-wide expression profiling 
for thousands of individual cells in parallel.  Not only will this highly scalable technology provide the 
statistical power needed to dissect and relate phenotypic and transcriptional subpopulations, it 
could eventually form the basis of an inexpensive diagnostic platform that is immune to compositional 
heterogeneity.

inFLUEnZA HoST cLASSiFicATion
cHRiS WiGGinS LAB
MKBoost, an adaboost classifier with a mismatch k-mer feature space, was used to build predictive 

classifier of influenza host organism in order to identify sequence elements important in host 
adaptation. The classifier was built using publicly available sequence data from the NCBI influenza 
virus resource, trained on hemagglutinin (HA) sequences from all influenza subtypes, initially restricted 
to avian and human host isolates. The HA protein was chosen because of its known role in viral host 
specificity, primarily in binding to either alpha(2,3)-linked (avian) or alpha(2,6)-linked (human) sialic 
acids.
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After training, the algorithm yielded high (>98% AUC) classification accuracy within 4 to 5 rounds 
of boosting. Following repeated cross-validation folds, selected k-mers were ranked based on their 
harmonic mean round of appearance, a test of selection robustness, under the assumption that 
k-mers robustly selected earlier in boosting carry more biological importance. When these selected 
k-mers were mapped onto a reference hemagglutinin sequence (Figure 4), known host-specific 
features in the receptor binding region were recovered, specifically those in the 190-helix and the 
220-loop. Additionally, there is significant overlap with those mutations identified in (Imai 2012). This 
validates that the classifier is selecting regions biologically relevant for host adaptation. Those regions 
outside of the known domains will be selected for experimental validation studies.

Future work will use this method to identify motifs relevant for host adaptation in the internal genome 
segments, specifically those that have been implicated in host-specific interactions and virulence, 
including the polymerase proteins PB1 and PB2, and the nonstructural NS1 protein.
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SUPERViSED LEARninG oF ViRAL oncoGEniciTY
cHRiS WiGGinS LAB
There is a great wealth of information contained in genomic sequence data, and advances in 

sequencing technology have only added to the massive troves of such data.  It is now possible to 
tackle difficult questions relating genotype and phenotype of various organisms in a data driven 
fashion.  When attempting to link genomic motifs to observed organism-level function, the ideal 
organism would be nothing more than a complex of its gene-products, essentially a virus.  This is a key 
reason for targeting problems specifically within the sub-domain of viral sequence data, the relatively 
direct mapping of genotype to phenotype.  There is already a short list of consensus oncogenic 
viruses in the medical literature, and the question of which genomic features predict tumor growth 
can and should be cast as a computational task leveraging the abundance of sequence data for 
these very oncoviruses.

Previous work within the Wiggins group has established an algorithm, MKBoost, which learns boosted 
decision tree classifiers for sequence data.  The sequences are represented as collections of k-mers 
and the discriminative rules that build our classifiers are the presence/absence of specific k-mers.

Current work is focused on amino acid sequences from the proteins of human papilloma viruses 
(HPV). Protein sequences are collected from NCBI’s viral genome resources and annotated with a 
binary label representing whether or not the particular HPV subtype of the isolate is known to be 
associated with human malignancy.  Decision trees trained on this labeled data achieve ~90% AUC 
at 10 rounds of boosting. Beyond good classification performance though, it is of interest whether the 
k-mer rules selected for the trees are robust across different cross validation folds.  Indeed the highest 
selected motifs consistently fell in either L1 (capsid protein) or E6 (canonical oncoprotein).

Interesting next steps include training only on E6 sequences to learn specific regions of the protein 
which contain predictive k-mers, and also applying these high performance classifiers to non-HPV 
sequences with unclear oncogenic potential, such as human adenoviruses.

cLUES To THE GEnETicS RooTS oF AUTiSM
DEnniS ViTKUP LAB
The genetic architecture of autism is turning out to be even more complex than the disease’s 

diverse clinical manifestations. Large genetic studies have ruled out the hypothesis that autism is 
due to genetic malfunctions in a single gene or a small core set of genes. Instead, there is growing 
consensus that genetic mutations in many hundreds of genes contribute to autism spectrum 
disorders. To understand molecular networks underlying the autistic phenotype, Dennis Vitkup’s lab 
has developed NETBAG, a novel method for network-based analysis of genetic associations. NETBAG 
was used to identify a large biological network of genes affected by rare de-novo copy number 
variants (CNVs) associated with autism (Gilman 2011). The genes forming the identified network are 
primarily related to synapse development, axon targeting, and neuron motility (Figure 5). The network 
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Figure 4: Histogram showing selected motifs mapped onto a reference H5 type hemagglutinin (PDBID: 2IBX) for 
mismatch m=2,3,4. The weight at each residue reflects the robustness of selection of motifs at that site under 5-fold 
cross validation. Host-adaptive mutations identified in (Imai 2012) are highlighted in red.
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is also strongly related to genes previously implicated in autism and intellectual disability phenotypes. 
Overall, the analysis of de-novo variants supports the hypothesis that perturbed synaptogenesis lies 
at the heart of autism. The results of the study are also consistent with the hypothesis that significantly 
stronger functional perturbations are required to trigger the autistic phenotype in females compared 
to males. More generally, the study provides proof of the principle that networks underlying complex 
human phenotypes can be identified by a network-based analysis of relevant rare genetic variants..
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WEB-EnABLED AccESS To MAGnET TooLS
ARiS FLoRAToS LAB
geWorkbench (http://www.geworkbench.org/), the bioinformatics platform of the MAGNet 

Center, is an open source Java application that provides access to the computational tools and 
data resources of the MAGNet Center as well as to 3rd party analysis and visualization modules for 
a wide range of genomics domains (Floratos 2010). A key goal of geWorkbench is to make it easier 
for non-computational biologists to leverage the power of advanced software tools such as those 
developed in the MAGNet laboratories. To that end, geWorkbench offers a uniform graphical user 
interface that provides integrated access to more than 70 modules, thus eliminating the need to 
individually download and deploy a large number of tools.
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In the past geWorkbench was available only as a thick Java client, delivered through a self-extracting 
installer. One of the benefits of the thick client model is that it allows leveraging the rich visualization 
and interactivity capabilities of the Swing framework in Java. We have now complemented the Java 
client with geWorkbench-Web, a web-enabled version of the application that allows accessing 
many of the available components through a browser. While the web interface lacks some of the 
more advanced interactive features of the thick client, it offers an attractive alternative for instant 
and installation-free access to the geWorkbench computational services, leaving the thick client as 
an option for power users that wish to take advantage of the more advanced Swing features. A pilot 
version of geWorkbench-Web with a small number of modules is currently under testing. A production 
release, comprising many of the components in the Java version, is planned for the end of 2012.
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Figure 5: Gene Clusters Found using NETBAG analysis of De Novo CNV regions observed in autistic individuals(A) 
Highest scoring cluster obtained using the search procedure with up to one gene per each CNV region.(B) Cluster 
obtained using the search with up to two genes per region. Genes (nodes) with known functions in the brain and 
nervous systems are colored in orange. Node sizes represent the importance of each gene to the overall cluster 
score. Edge widths are proportional to the prior likelihood that the two corresponding genes contribute to a 
shared genetic phenotype.
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