Breast cancer cells

A histological slide of cancerous breast tissue. The pink "riverways" are normal connective tissue while areas stained blue are cancer cells. (Source: National Cancer Institute)

Investigators at Columbia University Medical Center and the Icahn School of Medicine at Mount Sinai have discovered a molecular signaling mechanism that drives a specific type of highly aggressive breast cancer. As reported in a paper in Genes & Development, a team led by Jose Silva and Andrea Califano determined that the gene STAT3 is a master regulator of breast tumors lacking hormone receptors but testing positive for human epidermal growth receptor 2 (HR-/HER2+). The researchers also characterized a pathway including IL-6, JAK2, STAT3, and S100A8/9 — genes already known to play important roles within the immune response — as being essential for the survival of HR-/HER2+ cancer cells. Additional tests showed that disrupting this pathway severely limits the ability of these cells to survive.

These findings are particularly exciting because the pathway the researchers identified contains multiple targets for which known FDA-approved drugs exist. The paper reports that when these drugs were tested in disease models, the cancer cells showed a dramatic response, suggesting promising strategies for the treatment of the HR-/HER2+ cancer subtype. A clinical trial is now underway to investigate the effects of these approaches in humans.

Saeed TavazoieSaeed Tavazoie, a professor in the Columbia University Department of Systems Biology, has been named a recipient of a 2015 National Institutes of Health Transformative Research Award. The grant will support research to develop state-of-the-art experimental and computational methods for comprehensively mapping and modeling all pairwise molecular interactions inside cells. 

The Transformative Research Award is a part of the NIH Common Fund’s High-Risk, High-Reward Research program, which provides critical funding to scientists it recognizes as being exceptionally creative and who propose particularly innovative approaches to solving key problems in biomedical research. The Transformative Research Award is designed to support projects that use methods and perspectives that are unconventional and untested, but show great potential to create or overturn fundamental paradigms.

Kyle AllisonKyle Allison, a Systems Biology Fellow in the Columbia University Department of Systems Biology and recent winner of a National Institutes of Health Early Independence Award, is featured this week in a blog post authored by NIH Director Francis Collins. The article highlights Dr. Allison’s ongoing efforts to use approaches based in systems biology to understand bacterial persistence, a phenomenon that in clinical settings can often lead to dangerous, difficult-to-manage infections.

Read the complete post here: Creative Minds: Searching for Solutions to Chronic Infection.

Electronic media offer valuable tools for learning, but what is the best way to integrate these technologies within the traditional university setting?  Brent Stockwell, a faculty member in the Columbia University Department of Systems Biology, recently asked himself this question about blended learning, an educational approach he had begun incorporating into his undergraduate biochemistry class. As Columbia News reports, the results of this investigation have been published in the journal Cell:

Oliver Hobert
Oliver Hobert

Oliver Hobert, an interdisciplinary faculty member of the Department of Systems Biology, has received a Javits Neuroscience Investigator Award from the National Institute of Neurological Disorders and Stroke (NINDS). This prestigious grant provides long-term support for investigators who have demonstrated exceptional achievement throughout their careers. The award will enable the Hobert Lab to pursue a new project investigating sex-based differences in the regulation of neuronal identity.

Also a Professor of Biochemistry and Molecular Biophysics and an Investigator of the Howard Hughes Medical Institute, Dr. Hobert is known for his research using C. elegans to understand the molecular programs that control cell-type differentiation within the nervous system. C. elegans has become an invaluable model organism for studying the nervous system because it contains just over 300 neurons whose development has been studied in great detail.