News

Andrea Califano and Aris Floratos
Andrea Califano and Aris Floratos will lead an effort to reclassify tumors catalogued in TCGA according to their master regulators.

Andrea Califano and Aris Floratos, faculty members in the Columbia University Department of Systems Biology, have received a two-year, $624,236 subcontract to develop a new classification system of cancer subtypes. The agreement was awarded through a subcontract from Leidos Biomedical Research, Inc., which operates the Frederick National Laboratory for Cancer Research for the federal government.  

By performing an integrative analysis of genomic data from the Cancer Genome Atlas (TCGA) and proteomic data from the National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium (CPTAC), the researchers plan to recategorize tumors collected in TCGA based on the master regulator genes that determine their state. This is in contrast to other approaches based on expression of genes that reflect tissue lineage and proliferative processes. In addition, the team will link the genetics of each tumor sample to the specific master regulators that determine its state using a recently published novel algorithm (DIGGIT). Ultimately, the project aims to provide a more useful catalog of pan-cancer subtypes that could help to identify biomarkers and therapeutic targets for specific kinds of tumors, and ultimately provide a resource to guide the next generation of precision medicine.

“We have to reevaluate the way in which we organize tumors within subtypes, using both gene expression data and mutational data,” says Dr. Califano. “Right now the common approach is to classify tumor types based on rather generic genes that are differentially expressed between subtypes. But most of these genes play no role in actually driving the disease. We want to shift the emphasis and classify tumors based on the genes that truly regulate tumor state and survival.”

Harris Wang

Harris Wang, an assistant professor in the Columbia University Department of Systems Biology and Department of Pathology and Cell Biology, has been selected to receive a 2015 Alfred P. Sloan Foundation Research Fellowship in computational and evolutionary molecular biology. This two-year, $50,000 grant will support work that combines methods from synthetic biology and computational biology to study how horizontal gene transfer contributes to microbial evolution.

Since 1955, the Sloan Research Fellowship program has supported outstanding early-career scientists in recognition of their achievements and their potential to make important contribution to their fields. This year’s fellows included 126 investigators, with 12 awardees in the field of computational and evolutionary molecular biology. Other disciplines represented in the awards include chemistry, computer science, economics, mathematics, neuroscience, ocean sciences, and physics.

Autism Spectrum Disorders Genetic Network

Network of autism-associated genes. (Credit: Dennis Vitkup)

The following article is reposted with permission from the Columbia University Medical Center Newsroom. Find the original here.

People with autism have a wide range of symptoms, with no two people sharing the exact type and severity of behaviors. Now a large-scale analysis of hundreds of patients and nearly 1000 genes has started to uncover how diversity among traits can be traced to differences in patients’ genetic mutations. The study, conducted by researchers at Columbia University Medical Center, was published Dec. 22 in the journal Nature Neuroscience.

Autism researchers have identified hundreds of genes that, when mutated, likely increase the risk of developing autism spectrum disorder (ASD). Much of the variability among people with ASD is thought to stem from the diversity of underlying genetic changes, including the specific genes mutated and the severity of the mutation.

“If we can understand how different mutations lead to different features of ASD, we may be able to use patients’ genetic profiles to develop accurate diagnostic and prognostic tools and perhaps personalize treatment,” said senior author Dennis Vitkup, PhD, associate professor of systems biology and biomedical informatics at Columbia University’s College of Physicians & Surgeons.

Sequence of genomic alterations in CLLA graph representing the sequence of genomic alterations in chronic lymphocytic leukemia (CLL). Each node represents a mutation, with arrows indicating temporal relationships between them. The size of the nodes indicates the number of patients in the study who exhibited the alteration, while the thickness of the lines shows how often the temporal relationships between nodes were seen. The method the researchers use enabled them to identify multiple, distinct evolutionary patterns in CLL.

As biologists have gained a better understanding of cancer, it has become clear that tumors are often driven not by a single mutation, but by a series of genetic changes that correspond to particular stages of cancer progression. In this sense, a tumor is constantly evolving, with different groups of cells that harbor distinctive mutations multiplying at different rates, depending on their fitness for particular disease states. As the search for more effective cancer diagnostics and therapies continues, one key question is how to disentangle the order in which mutations occur in order to understand how tumors change over time. Being able to predict how a tumor will behave based on signs seen early in the course of disease could enable the development of new diagnostics that could better inform treatment planning.

In a paper just published in the journal eLife, a team of investigators led by Department of Systems Biology Associate Professor Raul Rabadan reports on a new computational strategy for addressing this challenge. Their framework, called tumor evolutionary directed graphs (TEDG), considers next-generation sequencing data from tumor samples from a large number of patients. Using TEDG to analyze cancer cells in patients with chronic lymphocytic leukemia (CLL), they were able to develop a model of how the disease’s mutational landscape changes from its initial onset to its late stages. Their findings suggest that CLL may not be just the result of a single evolutionary path, but can evolve in alternative ways.

Expanding the landscape of breast cancer drivers

In comparison with a previous study (Stephens et al., 2012, shown in gray), a new computational approach that focuses on somatic copy number mutations increased the number of known driver mutations in breast tumors to a median of five for each tumor. The findings could raise the likelihood of finding actionable targets in individual patients with breast cancer.

For many years, researchers have known that somatic copy number alterations (SCNA’s) — insertions, deletions, duplications, and transpositions of sections of DNA that are not inherited but occur after birth — play important roles in causing many types of cancer. Indeed, most recurrent drivers of epithelial tumors are copy number alterations, with some found in up to 40% of patients with specific tumor types. However, because SCNA’s occur when entire sections of chromosomes become damaged, biologists have had difficulty developing effective methods for distinguishing genes within SCNA’s that actually drive cancer from those genes that might lie near a driver but do not themselves cause disease.

Helios nearly doubled the number of high-confidence predictions of breast cancer drivers.

In a new paper published in Cell, researchers in the laboratories of Dana Pe’er (Columbia University Departments of Systems Biology and Biological Sciences) and Jose Silva (Icahn School of Medicine at Mount Sinai) report on a new computational algorithm that promises to dramatically improve researchers’ ability to identify cancer-driving genes within potentially large SCNA’s. The algorithm, called Helios, was used to analyze a combination of genomic data and information generated by functional RNAi screens, enabling them to predict several dozen new SCNA drivers of breast cancer. In follow-up in vitro experimental studies, they tested 12 of these predictions, 10 of which were validated in the laboratory. Their findings nearly double the number of breast cancer drivers, providing many new opportunities towards personalized treatments for breast cancer. Their methodology is general and could also be used to locate disease-causing SCNA’s in other cancer types.

Leading this effort was Felix Sanchez-Garcia, a recent PhD graduate from the Pe’er Lab and a first author on the paper. The story of how this breakthrough came about illuminates how the interdisciplinary research and education that take place at the Department of Systems Biology can address important challenges facing biological and biomedical research.