Events

Unsupervised Language Modeling at the Scale of Evolution

Speaker
Alexander Rives, PhD candidate
New York University
Location

Alex Rives (@alexrives) | Twitter

Alexander Rives, visiting research scientist, Facebook AI Research PhD candidate at New York University will deliver the talk titled "Unsupervised Language Modeling at the Scale of Evolution"
 
Join the Zoom
 
Meeting ID: 967 9363 3223
 
Passcode: 328834

Abstract:

Growth in the number of protein sequences in public databases has followed an exponential trend over decades, creating a deep view into the breadth and diversity of proteins across life. Modeling sequences at the scale of evolution is a logical step toward predictive and generative artificial intelligence for biology. Our goal is to develop general purpose models that can distill biological design principles directly from sequences with unsupervised learning. In contrast to the standard practice of fitting models to families of related sequences, we fit a single high-capacity model to millions of diverse sequences spanning evolution. I'll discuss our work to understand what large transformer language models learn about protein structure and function from sequences, how their internal representations can be used to produce features for a variety of tasks, and the use of the models generatively. I'll also introduce a new language model that learns to extract structure using attention over sets of aligned sequences rather than individual sequences. Protein language modeling at scale produces state-of-the-art features for prediction tasks and surpasses state-of-the-art unsupervised protein structure learning methods.

Event Series Name
DSB Distinguished Seminar Series
Host(s)
Mohammed AlQuraishi

Add to Calendar
05-26-2021 15:00:00
05-26-2021 16:00:00
15
Alexander Rives, PhD candidate (New York University)
Alexander Rives, visiting research scientist, Facebook AI Research PhD candidate at New York University will deliver the talk titled "Unsupervised Language Modeling at the Scale of Evolution"
false
MM/DD/YYYY