News

One of the immune system’s oldest branches, called complement, may be influencing the severity of COVID disease, according to a new study from Drs. Sagi Shapira and Nicholas Tatonetti at the Department of Systems Biology.

Drs. Sagi Shapira (right) and Nick Tatonetti
Drs. Nicholas Tatonetti (left) and Sagi Shapira

Among other findings linking complement to COVID, the researchers found that people with age-related macular degeneration—a disorder caused by overactive complement—are at greater risk of developing severe complications and dying from COVID.

The connection with complement suggests that existing drugs that inhibit the complement system could help treat patients with severe COVID-19.

The study was published in Nature Medicine . For the full article , visit the Columbia University Irving Medical Center Newsroom. 

Xuebing Wu, PhD, has been selected as a Pew-Stewart Scholar for his innovative approaches to cancer research.

The Pew Charitable Trusts and the Alexander and Margaret Stewart Trust named five early-career researchers to its prestigious Pew-Stewart Scholars Program for cancer research. This talented class of scholars will receive four years of funding to advance groundbreaking research into the development, diagnosis, and treatment of the disease. As a Pew-Stewart scholar, Dr. Wu will investigate the dysregulation of messenger RNA structure in the development of breast cancer.

Dr. Wu, who joined Columbia University in the fall of 2018, is an assistant professor of medical sciences in the Departments of Systems Biology and Medicine. Read the full article here

Sagi Shapira,PhD, assistant professor of systems biology at Columbia’s Vagelos College of Physicians & Surgeons and Nicholas Tatonetti, PhD, associate professor of bioinformatics and of systems biology at VP&S, have recently been awarded a new pilot grant to support their collaboration in COVID-19 research.

Drs. Shapira and Tatonetti are one of three teams who have been awarded a COVID-19 research pilot grant from the Herbert Irving Comprehensive Cancer Center. The pair will work on accurately identifying pathophysiological factors that modulate SARS-CoV-2 infection and explain variability in disease outcomes.

Read the full article here

Raul Rabadan , PhD, is an expert in uncovering patterns of evolution in highly dynamic biological systems, including in complex diseases like cancer. As the author of Understanding Coronavirus , a new book published by Cambridge University Press in June,  Dr. Rabadan, who originally began his academic career in mathematical physics, has set out to provide readers an accessible overview that quells misinformation about the novel virus, its origin, causes, and spread.

New Book by Raul Rabadan, PhD

Dr. Rabadan co-directs the Cancer Genomics and Epigenomics research program at the Herbert Irving Comprehensive Cancer Center (HICCC) , is professor of systems biology and of biomedical informatics at Columbia University Vagelos College of Physicians & Surgeons , and directs Columbia’s Program for Mathematical Genomics . He joined Columbia in 2008 right before the novel influenza, H1N1 or “swine flu”, emerged and quickly spread across the U.S. and the world.

At the time, Dr. Rabadan’s work honed in on understanding the genomic changes in a virus infecting a host and investigating how these changes contribute to the virus’ transfer to a different species. He continues to be fascinated by what can be gleaned from examining disease evolution.

When COVID-19 cases surged through the U.S., particularly in New York City in March, Dr. Rabadan—like many fellow scientists—contributed his research toward developing a treatment or vaccine. Scheduled to be on sabbatical this year, Dr. Rabadan instead remained quarantined with his family in New York City, shifting his attention to the new book and his own ongoing work in the genomics of cancer and COVID-19 research.

Read a Q+A with Dr. Rabadan, here

The seemingly chaotic bacterial soup of the gut microbiome is more organized than it first appears and follows some of the same ecological laws that apply to birds, fish, tropical rainforests, and even complex economic and financial markets, according to a new paper in Nature Microbiology by researchers led by Dennis Vitkup , PhD, associate professor of systems biology , at Columbia Univesrity Irving Medical Center .

One of the main challenges facing researchers who study the gut microbiome is its sheer size and amazing organizational complexity. Many trillions of bacteria, representing thousands of different species, live in the human intestinal tract, interacting with each other and the environment in countless and constantly changing ways.

"Up to now, it has been an open question whether there are any natural laws describing dynamics of these complex bacterial communities.”-Dr. Vitkup

The study’s discovery of multiple principles of gut bacterial dynamics should help researchers to understand what makes a gut microbiome healthy, how it may become perturbed in disease and unhealthy diets, and also suggest ways we could alter microbiomes to improve health. Read the full article in the CUIMC Newsroom. 

The study is titled “Macroecological dynamics of gut microbiota.” The other contributors are Brian W. Ji (Columbia), Ravi U. Sheth (Columbia), Purushottam D. Dixit (Columbia and University of Florida, Gainesville, FL), and Konstantine Tchourine (Columbia).