News

Raul Rabadan, PhD, professor of systems biology and of biomedical informatics, has been named a 2020 Highly Cited Researcher by Clarivate. Announced Nov. 18, Dr. Rabadan is one of 45 Columbia University faculty members who were selected for the annual list. 

The Highly Cited Researchers annual report recognizes researchers who have had major impacts in their fields. To be named to the list, researchers must produce multiple papers ranking in the top 1% globally by citations for their field and year of publication, demonstrating significant research influence among their peers.

Dr. Rabadan, founding director of Columbia's Program for Mathematical Genomics, also was named to the list in 2019, along with fellow Systems Biology faculty member, Xuebing Wu, PhD.

Andrea Califano
Andrea Califano identifies 'master regulators' of cancer cells. (Credit: Tim Lee Photographers)

Genomics has revolutionized cancer research. Conventional classifications of disease, in terms of which organs and tissues it affects, are being divided into subtypes defined by the specific mutations that drive the disease. Some argue, however, that the impact on cancer care has not lived up to expectations. “Only about 5–10% of cancer patients derive any benefit from targeted therapy using genetics, and almost all of them eventually relapse,” says Andrea Califano , Dr, chair of the Department of Systems Biology at Columbia University Irving Medical Center. “The number that are actually cured is extremely small.”

Developing a genetically targeted therapy is no easy task. It can be tricky to identify which genetic mutations are driving the cancer and which are passengers — those that are statistically linked, but that do not cause cancer. And although developers of targeted therapies focus mainly on mutations to a subset of genes called oncogenes, there is more to malignancy. Read the full Nature Outlook article here

Mohammed AlQuraishi, PhD

The Department of Systems Biology at Columbia University Irving Medical Center is pleased to welcome new faculty member, Mohammed AlQuraishi , PhD, effective Sept. 21. Dr. AlQuraishi joins Columbia as an assistant professor and as a member of Columbia’s Program for Mathematical Genomics. 

Prior to joining Columbia, Dr. AlQuraishi served as a fellow of systems pharmacology and systems biology at Harvard Medical School. He completed his PhD in genetics and master’s in statistics from Stanford University. At Santa Clara University, he earned two bachelor’s degrees in biology and in computer engineering. 

A Bay Area transplant via Baghdad and Kuala Lumpur, Dr. AlQuraishi spent most of his teenage years in the San Francisco Bay Area before moving to the east coast for postdoctoral work. Influenced by the dot-com boom of the early 2000s in the Bay Area, Dr. AlQuraishi founded two startups in the mobile computing space before focusing on a career in academia. His circuitous path to systems biology and academic research ultimately blended his genuine interest and expertise in computer programming, mathematics, molecular biology, and science more broadly.

“What drew me to biology is its similarity to software, the fact that cells are always executing a sort of program," he says. "And just like programs, cells are more than a parts list—they are complex and interconnected in myriad ways. To tame this complexity we need synthesis, and that is the promise and challenge of systems biology.”

One of the immune system’s oldest branches, called complement, may be influencing the severity of COVID disease, according to a new study from Drs. Sagi Shapira and Nicholas Tatonetti at the Department of Systems Biology.

Drs. Sagi Shapira (right) and Nick Tatonetti
Drs. Nicholas Tatonetti (left) and Sagi Shapira

Among other findings linking complement to COVID, the researchers found that people with age-related macular degeneration—a disorder caused by overactive complement—are at greater risk of developing severe complications and dying from COVID.

The connection with complement suggests that existing drugs that inhibit the complement system could help treat patients with severe COVID-19.

The study was published in Nature Medicine . For the full article , visit the Columbia University Irving Medical Center Newsroom.