Chaolin Zhang, PhD, associate professor of systems biology
A new study by researchers in Dr. Chaolin Zhang’s lab at Columbia’s Department of Systems Biology details a novel computational method that models how RNA-binding proteins (RBPs) recognize specific sites in the target RNA transcripts, precisely and accurately. The researchers’ findings include identification of entirely new motifs (RNA sequence patterns), and their research in complex RNA regulation contributes to our understanding of the molecular basis of disease and conditions, and down the road, could aid in the development of targeted therapies.
The study, led by Dr. Zhang, associate professor of systems biology, with senior co-authors Suying Bao, PhD, and Huijuan Feng, PhD, appears today in Molecular Cell.
RNA has traditionally been considered mere “messengers” that transfer genetic information from DNA to proteins that ultimately carry out cellular functions. However, it is now increasingly appreciated that RNA can be tightly regulated to control gene expression and diversity protein products. RNA-binding proteins (RBPs) are at the center of such regulation, with important roles in many cellular processes, including cell function, transport, and location. Gaining mechanistic insights of the binding specificity of RBPs in a genome-wide scale helps advance our knowledge of gene regulation.
“RNA-binding proteins are crucial for gene expression,” says Dr. Feng, coauthor of the study and post-doctoral research scientist in the Zhang lab. “RNA is heavily regulated, and when this regulation goes wrong, instabilities or disease could occur.”