News

Phyllis Thangaraj
Phyllis Thangaraj, MD/PhD student (Tatonetti lab)

Aspiring physician-scientists from Columbia's Vagelos College of Physicians and Surgeons presented their research posters at the 14th annual MD-PhD Student Research Symposium on April 25. Their research delved into a range of topics, including Alzheimer’s disease, stroke, and stem cells. The event included a guest lecture by an alumna about her own career path as a physician-scientist, and culminated in the poster session judged by MD-PhD alumni who currently work at the University. Department of Systems Biology’s Phyllis Thangaraj, an MD/PhD student in the Nicholas Tatonetti lab , was named one of five poster winners at the event. 

She presented work on applying machine learning methods to phenotype acute ischemic stroke patients in the electronic health records. In cohort research studies, it is essential to identify a large number of subjects in an accurate and efficient manner, but often this requires time-consuming manual review of patient charts. 

“We applied machine learning methods to data within a patient’s electronic health records to develop a high-throughput way to define research cohorts,” explains Thangaraj. “Our test case is in acute ischemic stroke. We extracted clues within a person’s medical record that required minimal data processing to classify those who have had a stroke. In a separate cohort, the UK Biobank, we were able to use our model to identify patients with self-reported stroke but no mention in their medical data with 65-fold better precision than random selection of patients.” Although stroke was the test case in this particular work, she explained that their workflow could be applied to identify patients for cohorts of other diseases, particularly when the dataset has missing data. 

 

Andrea Califano
Andrea Califano, Dr

The migration away from “one-size-fits-all” medicine, particularly in the areas of cancer detection and treatment, holds great promise for patients and the field of precision medicine. Demand and jobs are increasing for researchers, clinicians and professionals who are at home collecting, analyzing and using more and newer forms of data, according to a recent feature reported in Science magazine which spotlights Dr. Andrea Califano , founding chair of the Department of Systems Biology

In the field of oncology, innovations continue to grow rapidly in precision, or targeted medicine, as clinicians seek to find better treatments for specific kinds of cancer, rather than take a blanket approach via the traditional trifecta of radiation, chemotherapy, and surgery. To do so, they must test patients, note mutations, and identify biomarkers to determine what treatments could work best with the fewest side effects.

Scientific breakthroughs, in these areas and more, have led to greater understanding of genes and their functions and have created new opportunities for precision medicine—and for those with technical, research, and clinical skills eager to work in this ever-expanding field. Special consideration will be given to those job applicants who can perform big data analysis and multidisciplinary research. However, new jobs will also emerge in previously unseen areas, such as business, translational medicine, and genetic counseling.

New and powerful tools have aided the precision medicine movement. The Human Genome Project, the first complete mapping of human genes, published its preliminary results in 2001. The project’s numerous benefits include knowing the location of the approximately 20,500 genes identified in the body and gaining a clearer understanding of how genes areorganized and operate.

The Korem Lab

One of the structural variations detected in Anaerostipes hadrus, which is deleted in ~40% of the population (top), and associated with higher disease risk. Genes in this region (bottom) code a composite inositol catabolism - butyrate production pathway, potentially supplying the microbe with additional energy while supplying the host with butyrate, previously shown to have positive metabolic and anti-inflammatory effects. (Credit: Korem lab)

Our gut microbiome has been linked to everything from obesity and diabetes to heart disease and even neurological disorders and cancer. In recent years, researchers have been sorting through the multiple bacterial species that populate the microbiome, asking which of them can be implicated in specific disorders. But a paper recently published in Nature addressed a new question: "What if the same microbe is different in different people?" The study was co-led by Dr. Tal Korem , assistant professor of systems biology and core faculty member in the Program for Mathematical Genomics at Columbia University Irving Medical Center

It has been long known that the genomes of microbes are not fixed from birth, as ours are. They are able to lose some of their genes, exchange genes with other microorganisms, or gain new ones from their environment. Thus, a detailed comparison of the genomes of seemingly identical bacteria will reveal sequences of DNA that occur in one genome and not others, or possibly sequences that appear just once in one and several times over in others. These differences are called structural variants. Structural variants - even tiny ones - can translate into huge differences in the ways that microbes interact with their human hosts. A variant might be the difference between a benign presence and a pathogenic one, or it could give bacteria resistance to antibiotics.

Dr. Raul Rabadan is leading a global research project as part of a new grant from the Pancreatic Cancer Collective to identify high-risk factors of pancreatic cancer. (Courtesy of Stand Up to Cancer)

A global team of researchers led by theoretical physicist Raul Rabadan, PhD, professor of systems biology at Columbia’s Vagelos School of Physicians and Surgeons, and Núria Malats, MD, PhD, head of the Genetic and Molecular Epidemiology Group of the Spanish National Cancer Research Centre (CNIO), are working to develop a comprehensive computational framework that will identify high-risk factors for pancreatic cancer.  

Armed with a new two-year, $1 million grant from the Pancreatic Cancer Collective, the team intends to attack pancreatic cancer research from multiple disciplines—genomics, mathematics and medicine—to provide an integrated, computational approach to studying genomic, environmental and immune factors that could identify populations at high risk of pancreatic cancer. The need for deeper understanding of the contributing factors to this lethal disease is pressing, as pancreatic cancer is projected to become the second leading cause of cancer-related mortality within the next decade. 

Rabadan-led Team for Pancreatic Cancer Collective
Drs. Raul Rabadan and Nuria Malats

Cory Abate-Shen, PhD, a distinguished scientist whose multidisciplinary research has advanced our understanding of the molecular basis of cancer initiation and progression, has been named chair of the Department of Pharmacology at Columbia University Vagelos College of Physicians and Surgeons. Her appointment will be effective April 1, 2019.

Recruited to Columbia in 2007, Dr. Abate-Shen is currently the Michael and Stella Chernow Professor of Urologic Sciences and professor of pathology & cell biology, medicine, and systems biology. She has served as the leader of the prostate program, associate director, and twice as interim director of the Herbert Irving Comprehensive Cancer Center (HICCC) at Columbia University Irving Medical Center and NewYork-Presbyterian.

An internationally recognized leader in genitourinary malignancies, Dr. Abate-Shen is particularly interested in advancing our understanding of the mechanisms and modeling of prostate and bladder tumors. An innovator in the generation of novel mouse models for these cancers, her work has led to the discovery of new biomarkers for early detection, as well as key advances in cancer prevention and treatment.

In the fall of 2018, Dr. Abate-Shen was elected a fellow of the American Association for the Advancement of Science (AAAS). She is an American Cancer Society Professor, the first faculty member at Columbia University Vagelos College of Physicians and Surgeons to have received this honor. Previously, she served as a member of the National Cancer Institute’s Board of Scientific Counselors, and she currently is a member of the board of directors of the American Association of Cancer Research. 

Dr. Abate-Shen will succeed Robert S. Kass, PhD, the Hosack Professor of Pharmacology, Alumni Professor of Pharmacology, and chair of pharmacology since 1995.

Visit the CUIMC Newsroom for the full announcement