News

Biological ‘Rosetta Stone’ Brings Scientists Closer to Deciphering How the Body is Built

Time lapse of a developing drosophila embryo. (Credit: Carlos Sanchez-Higueras/Hombría lab/CABD)

Every animal, from an ant to a human, contains in their genome pieces of DNA called Hox genes. Architects of the body, these genes are keepers of the body’s blueprints; they dictate how embryos grow into adults, including where a developing animal puts its head, legs and other body parts. Scientists have long searched for ways to decipher how Hox genes create this body map; a key to decoding how we build our bodies.

Now an international group of researchers from Columbia University and the Spanish National Research Council (CSIC) based at the Universidad Pablo de Olavide in Seville, Spain have found one such key: a method that can systematically identify the role each Hox gene plays in a developing fruit fly. Their results, reported recently in Nature Communications , offer a new path forward for researchers hoping to make sense of a process that is equal parts chaotic and precise, and that is critical to understanding not only growth and development but also aging and disease.

“The genome, which contains thousands of genes and millions of letters of DNA, is the most complicated code ever written,” said study co-senior author Richard Mann , PhD, principal investigator at Columbia’s Mortimer B. Zuckerman Mind Brain Behavior Institute and a faculty member in the Department of Systems Biology . “Deciphering this code has proven so difficult because evolution wrote it in fits and starts over hundreds of millions of years. Today’s study offers a key to cracking that code, bringing us closer than ever to understanding how Hox genes build a healthy body, or how this process gets disrupted in disease.”

Read the full article at the Zuckerman Institute