Research News ×

News

Differential decay rates in MDA-LM2 vs. MDA cells

The presence of the structural RNA stability element (sSRE) family of mRNA elements distinguishes transcript stability in metastatic MDA-LM2 breast cancer cell lines from that seen in its parental MDA cell line. Each bin contains differential decay rate measurements for roughly 350 transcripts. From left (more stable in MDA) to right (more stable in MDA-LM2), sRSE-carrying transcripts were enriched among those destabilized in MDA-LM2 cells. The TEISER algorithm collectively depicts sSREs as a generic stem-loop with blue and red circles marking nucleotides with low and high GC content, respectively. Also included are mutual information (MI) values and their associated z-scores. 

Gene expression analysis has become a widely used method for identifying interactions between genes within regulatory networks. If fluctuations in the expression levels of two genes consistently shift in parallel over time, the logic goes, it is reasonable to hypothesize that they are regulated by the same factors. However, such analyses have typically focused on steady-state gene expression, and have not accounted for modifications that messenger RNAs (mRNAs) can undergo during the time between their transcription from DNA and their translation into proteins. Researchers now understand that certain stem loop structures in mRNAs make it possible for proteins to bind to them, often causing RNA degradation and subsequently modulating protein synthesis. From the perspective of systems biology, this can have implications for the activity of entire regulatory networks, and recent studies have even suggested that aberrations in mRNA stability can play a role in disease initiation and progression.

In a new paper published in the journal Nature, Department of Systems Biology Professor Saeed Tavazoie and collaborators at the Rockefeller University describe a new computational and experimental approach for identifying post-transcriptional modifications and investigating their effects in biological systems. In a study of metastatic breast cancer, they determined that when the protein TARBP2 binds to a specific structural element in mRNA transcripts, it increases the likelihood that cancer cells will become invasive and spread. Interestingly, they also found that TARBP2 causes metastasis by binding transcripts of two genes — amyloid precursor protein (APP) and zinc finger protein 395 (ZNF395) — that have previously been implicated in Alzheimer’s disease and Huntington’s disease, respectively. Although the nature of this intersection between the regulatory networks underlying cancer and neurodegenerative diseases is unclear, the finding raises a tantalizing question about whether these very different disorders might be linked at some basic biological level.

Comparing human and mouse prostate cancer networks

Computational synergy analysis depicting FOXM1 and CENPF regulons from the human (left) and mouse (right) interactomes showing shared and nonshared targets. Red corresponds to overexpressed targets and blue to underexpressed targets.

Two genes work together to drive the most lethal forms of prostate cancer, according to new research by investigators in the Columbia University Department of Systems Biology.  These findings could lead to a diagnostic test for identifying those tumors likely to become aggressive and to the development of novel combination therapy for the disease.

The two genes—FOXM1 and CENPF—had been previously implicated in cancer, but none of the prior studies suggested that they might work synergistically to cause the most aggressive form of prostate cancer. The study was published today in the online issue of Cancer Cell.

“Individually, neither gene is significant in terms of its contribution to prostate cancer,” said co-senior author Andrea Califano, the Clyde and Helen Wu Professor of Chemical Biology in Biomedical Informatics and Chair of the Department of Systems Biology. “But when both genes are turned on, they work together synergistically to activate pathways associated with the most aggressive form of the disease.”

Co-principal investigator Andrea Califano discusses the new study.

“Ultimately, we expect this finding to allow doctors to identify patients with the most aggressive prostate cancer so that they can get the most effective treatments,” said co-senior author Cory Abate-Shen, the Michael and Stella Chernow Professor of Urologic Sciences and also a member of the Department of Systems Biology. “Having biomarkers that predict which patients will respond to specific drugs will hopefully provide a more personalized way to treat cancer.”

Distribution of marker expression across development

A new algorithm called Wanderlust uses single-cell measurements to detect how marker expression changes across development.

In a new paper published in the journal Cell, a team of researchers led by Dana Pe’er at Columbia University and Garry Nolan at Stanford University describes a powerful new method for mapping cellular development at the single cell level. By combining emerging technologies for studying single cells with a new, advanced computational algorithm, they have designed a novel approach for mapping development and created the most comprehensive map ever made of human B cell development. Their approach will greatly improve researchers’ ability to investigate development in cells of all types, make it possible to identify rare aberrations in development that lead to disease, and ultimately help to guide the next generation of research in regenerative medicine.

Pointing out why being able to generate these maps is an important advance, Dr. Pe’er, an associate professor in the Columbia University Department of Systems Biology and Department of Biological Sciences, explains, “There are so many diseases that result from malfunctions in the molecular programs that control the development of our cell repertoire and so many rare, yet important, regulatory cell types that we have yet to discover. We can only truly understand what goes wrong in these diseases if we have a complete map of the progression in normal development. Such maps will also act as a compass for regenerative medicine, because it’s very difficult to grow something if you don’t know how it develops in nature. For the first time, our method makes it possible to build a high-resolution map, at the single cell level, that can guide these kinds of research.”

Reversing glucocorticoid resistance

A representative example of tumor load analysis using bioluminescence imaging in mice following xenograft with T-ALL. Treatment with either MK2206 or dexamethasone showed limited efficacy, while combination treatment saw near complete elimination of tumor cells.

In a paper published in Cancer Cell, a team of researchers led by Adolfo Ferrando and Andrea Califano at Columbia University has identified the protein kinase AKT as a target for reversing resistance to glucocorticoid therapy in patients with acute lymphoblastic leukemia (ALL).  

Imaging synapses

In a test of the Columbia Genome Center's high-content microscopy system, computational image analysis confirmed a high degree of colocalization of green fluorescent protein-labeled synapsin and the dye FM4-64. The researchers plan a high-throughput screen to identify fluroescent small molecules capable of targeting synapses.

Synapses mediate communication between neurons in the brain, making them critical components for neurological activity. Research has shown that synaptic loss and dysfunction play roles in a number of debilitating brain disorders — including Alzheimer’s disease, major depressive disorder, and autism — but currently no effective method exists for identifying and imaging individual synapses in living human brains. Being able to locate and quantify synapses in patients could greatly improve the diagnosis and monitoring of disease, and potentially offer new approaches for treatment.

Clarissa Waites, an assistant professor of pathology and cell biology at the Columbia University College of Physicians & Surgeons, and Dalibor Sames in the Columbia University Department of Chemistry, have recently embarked on a collaboration with the Columbia Genome Center High-Throughput Screening Facility with the goal of identifying small fluorescent molecules that can selectively localize to synapses. If successful, this project could for the first time provide a method for targeting and imaging synapses in the living human brain.

Models of Evolution In Charles Darwin's seminal treatise On the Origin of Species there is only one image, which visualizes evolution as following a branching pattern in which species diverge into lineages over time like the limbs on a tree. With the increasing availability of genomic data, scientists have attempted to understand evolution at the molecular level by using a similar phylogenetic paradigm, but as Department of Systems Biology Assistant Professor Raul Rabadan , MD/PhD student Joseph Chan, and Stanford University mathematician Gunnar Carlsson point out in a new paper published in the Proceedings of the National Academy of Sciences , it has a number of shortcomings when applied in this way. By developing a new mathematical approach based on a method called persistent homology, the researchers produced several insights into viral evolution that could not be found using other means.

Researchers in the Columbia University Department of Systems Biology and Herbert Irving Comprehensive Cancer Center have determined that measuring the expression levels of three genes associated with aging can be used to predict the aggressiveness of seemingly low-risk prostate cancer. Use of this three-gene biomarker, in conjunction with existing cancer-staging tests, could help physicians better determine which men with early prostate cancer can be safely followed with “active surveillance” and spared the risks of prostate removal or other invasive treatment. The findings were published today in the online edition of Science Translational Medicine.

More than 200,000 new cases of prostate cancer are diagnosed each year in the U.S. “Most of these cancers are slow growing and will remain so, and thus they do not require treatment,” said study leader Cory Abate-Shen, Michael and Stella Chernow Professor of Urological Oncology at Columbia University Medical Center (CUMC). “The problem is that, with existing tests, we cannot identify the small percentage of slow-growing tumors that will eventually become aggressive and spread beyond the prostate. The three-gene biomarker could take much of the guesswork out of the diagnostic process and ensure that patients are neither overtreated nor undertreated.”

Rabadan, Nature Genetics

An analysis of all gene mutations in nearly 140 brain tumors has uncovered most of the genes responsible for driving glioblastoma. The analysis found 18 new driver genes (labeled red), never before implicated in glioblastoma and correctly identified the 15 previously known driver genes (labeled blue). The graphs show mutated genes that are commonly found in varying numbers in glioblastoma (left), that frequently contain insertions (middle), and that frequently contain deletions (right). Genes represented by blue dots in the graphs were statistically most likely to be driver genes.

A team of Columbia University Medical Center researchers has identified 18 new genes responsible for driving glioblastoma multiforme, the most common—and most aggressive—form of brain cancer in adults. The study was published August 5, 2013, in the journal Nature Genetics.

The Columbia team used a combination of high-throughput DNA sequencing and a new method of statistical analysis developed by co-author Raul Rabadan, an assistant professor in the Department of Systems Biology, to generate a short list of candidate gene mutations that were highly likely to drive cancer, as opposed to mutations that have no effect.

Considering these results along with a previous study this group conducted, Rabadan and collaborators Antonio Iavarone and Anna Lasorella point out that approximately 15% of glioblastomas could now be targeted with drugs that have already been approved by the FDA. As Lasorella remarks in an article for the CUMC Newsroom, “There is no reason why these patients couldn’t receive these drugs now in clinical trials.”

Searches for hyperglycemia-related terms

Percentage of users in each of the three user groups searching for hyperglycemia-related terms, computed per week over 12 months of search log data. Background refers to the fraction of all searchers who search for hyperglycemia-related symptoms or terminology independent of the presence of the drugs in the users’ search histories.

Although the US Food and Drug Organization and other agencies collect and analyze reports on adverse drug effects, alerts for single drugs and drug-drug interactions are often delayed due to the time it takes to accumulate evidence. Columbia University Department of Systems Biology faculty member Nicholas Tatonetti, in collaboration with investigators at Stanford University and Microsoft Research, hypothesized that Internet users can provide early clues of adverse drug events as they seek information on the web concerning symptoms they are experiencing. A new paper explains their results.

As a test, Tatonetti and colleagues asked whether it would be possible to detect evidence of an interaction between the antidepressant paroxetine and the anti-cholesterol drug pravastatin by analyzing web search logs from 2010. As a postfoc at Stanford, Tatonetti and colleagues used a data mining algorithm to analyze FDA adverse event reporting records, and retroactively found this combination to be associated with hyperglycemia (high blood sugar) in some patients. In this new project, the researchers analyzed the search logs of millions of Internet users from a period before the above association was identified to see how often they entered search terms related to hyperglycemia and to one or both medications under investigation. (Participants in this study opted in by voluntarily installing a web browser extension that tracked their activity anonymously.)

The cell-of-origin model in cancer biology suggests that some tumors are more aggressive than others because of differences in the cell lineages from which they arise. In the prostate gland, there are three types of epithelial stem cell — luminal cells, basal cells, and rare neuroendocrine cells. There has been some discrepancy in the scientific literature, however, about whether luminal cells, basal cells, or both can act as a cell of tumor origin.

In a paper published online in the journal Nature Cell Biology, researchers in the laboratories of Columbia University Department of Systems Biology members Michael Shen, Andrea Califano, and Cory Abate-Shen undertook a comprehensive analysis of prostate basal cell properties in mouse models. They used a technique called genetic linkage marking to study an identical cell population in multiple assays of stem cell function.

The studies showed that discrepancies in the published literature arise because basal stem cell properties can change when studied outside their endogenous tissue microenvironment; that is, in ex vivo cell culture and tissue grafting assays. To avoid this problem, they suggest, genetic lineage tracing in vivo should be considered the gold standard for identifying physiologically relevant stem cells.

viSNE

viSNE reveals the progression of cancer in a sample of cells taken from a patient with acute myeloid leukemia. Cells are colored according to intensity of expression of the indicated cell markers, enabling the comparison of expression patterns before and after relapse. For example, Fit3 is expressed primarily in the diagnosis sample, while CD34 emerges in the relapse sample.

Researchers in the Columbia Initiative in Systems Biology have developed a computational method that enables scientists to visualize and interpret high-dimensional data produced by single-cell measurement technologies such as mass cytometry. The method, called viSNE (visual interactive Stochastic Neighbor Embedding), has just been published in the online edition of Nature Biotechnology. It has particular relevance to cancer research and therapeutics. As Columbia University Medical Center reports:

Researchers now understand that cancer within an individual can harbor subpopulations of cells with different molecular characteristics. Groups of cells may behave differently from one another, including in how they respond to treatment. The ability to study single cells, as well as to identify and characterize subpopulations of cancerous cells within an individual, could lead to more precise methods of diagnosis and treatment.

“Our method not only will allow scientists to explore the heterogeneity of cancer cells and to characterize drug-resistant cancer cells, but also will allow physicians to track tumor progression, identify drug-resistant cancer cells, and detect minute quantities of cancer cells that increase the risk of relapse,” said co-senior author Dana Pe’er, associate professor of biological sciences and systems biology at Columbia.

Figure

Tumor-induced mRNA expression changes for individual biochemical reactions in central metabolism. 

A large study analyzing gene expression data from 22 cancer types has identified a broad spectrum of metabolic expression changes associated with cancer. The analysis, led by Dennis Vitkup, first author Jie Hu, a postdoctoral research scientist in the Vitkup lab, with a multi-institutional group of collaborators, also identified hundreds of potential drug targets that could cut off a tumor’s fuel supply or interfere with its ability to synthesize essential elements necessary for tumor growth. The study has just been published in the online edition of Nature Biotechnology .

As Columbia University Medical Center reports:

The results should ramp up research into drugs that interfere with cancer metabolism, a field that dominated cancer research in the early 20th century and has recently undergone a renaissance.

Attractor Metagenes - DREAM7

Team Attractor Metagenes receives its award at the DREAM7 Conference. Gustavo Stolovitzky (IBM Research), Adam Margolis (Sage Bionetworks), Dimitris Anastassiou, Tai-Hsien Ou Yang, Wei-Yi Cheng, Stephen Friend (Sage Bionetworks), Erhan Bilal (IBM Research)

The team of Professor Dimitris Anastassiou and graduate students Wei-Yi Cheng and Tai-Hsien Ou Yang has been recognized as the best performer in the Sage Bionetworks – DREAM Breast Cancer Prognosis Challenge. This challenge, one of four organized as part of the seventh Dialogue for Reverse Engineering Assessments and Methods (DREAM7), was designed to assess the ability of participants’ computational models to predict breast cancer survival using patient clinical information and molecular profiling data. As a reward for this accomplishment, the journal Science Translational Medicine has just published a paper from the Anastassiou lab describing their model. It is also the journal’s cover theme for this issue, which includes a second article describing the Challenge.

The Columbia University researchers based their DREAM entry on previous work to identify what they call “attractor metagenes,” sets of strongly co-expressed genes that they have found to be present with very little variation in many cancer types. Moreover, these metagenes appear to be associated with specific attributes of cancer including chromosomal instability, epithelial-mesenchymal transition, and a lymphocyte-specific immune response. As Wei-Yi Cheng comments in Sage Synapse, “We like to think of these three main attractor metagenes as representing three key ‘bioinformatic hallmarks of cancer,’ reflecting the ability of cancer cells to divide uncontrollably and invade surrounding tissues, and the ability of the organism to recruit a particular type of immune response to fight the disease.”

Genes forming cluster I in the context of cellular signaling pathways

Genes forming cluster I in the context of cellular signaling pathways. Proteins encoded by cluster genes are shown in yellow, and those corresponding to other relevant genes that were present in the input data but not selected by the NETBAG+ algorithm are shown in cyan. 

In a new paper published in the journal Nature Neuroscience, Columbia University researchers report that many of the genes that are mutated in schizophrenia are organized into two main networks. Surprisingly, the study also found that a genetic network that leads to schizophrenia is very similar to a network that has been linked to autism. 

Using a computational approach called NETBAG+, Dennis Vitkup and colleagues performed network-based analyses of rare de novo mutations to map the gene networks that lead to schizophrenia. When they compared one schizophrenia network to an autism network described in a study he published last year, they discovered that different copy number variants in the same genes can lead to either schizophrenia or autism. The overlapping genes are important for processes such as axon guidance, synapse function, and cell migration — processes within the brain that have been shown to play a role in the development of these two diseases. These gene networks are particularly active during prenatal development, suggesting that the foundations for schizophrenia and autism are laid very early in life.

GLOBUS algorithm

 An overview of the GLOBUS algorithm.

A Columbia University team led by professor Dennis Vitkup and PhD student German Plata of the Center for Computational Biology and Bioinformatics has developed a novel genome-wide framework for making probabilistic annotations of metabolic networks. Their approach, called Global Biochemical Reconstruction Using Sampling (GLOBUS), combines information about sequence homology with context-specific information including phylogeny, gene clustering, and mRNA co-expression to predict the probability of biochemical interactions between specific genes. By integrating these different categories of information using a principled probabilistic framework, this approach overcomes limitations of considering only one functional category or one gene at a time, providing a global and accurate prediction of metabolic networks.

In a paper published in Nature Chemical Biology, the scientists write, "Currently, most publicly available biochemical databases do not provide quantitative probabilities or confidence measures for existing annotations. This makes it hard for the users of these valuable resources to distinguish between confident assignments and mere guesses... The GLOBUS approach, which is based on statistical sampling of possible biochemical assignments, provides a principled framework for such global probabilistic annotations. The method assigns annotation probabilities to each gene and suggests likely alternative functions."

Transforming activity of FGFR-TACC fusion proteins

Representative microphotographs of hematoxylin and eosin staining of advanced FGFR3-TACC3-shp53–generated tumors show histological features of high-grade glioma.

A new paper published by Columbia University Medical Center researchers in the journal Science has determined that some cases of glioblastoma, the most aggressive form of primary brain cancer, result from the fusion of the genes FGFR and TACC. Raul Rabadan, a co-senior author on the study, led efforts to identify these genes by using quantitative methods to analyze the glioblastoma genome from nine patients, and then compare these results with more than 300 genomes from the Cancer Genome Atlas project.

The collaboration with cancer genomics expert Antonio Iavarone and co-senior author Anna Lasorella found that the protein produced by the FGFR-TACC fusion disrupts the mitotic spindle (the cellular structure that guides mitosis) and causes aneuploidy, an uneven distribution of chromosomes that causes tumorigenesis. The researchers also found that drugs that target this aberration can dramatically slow the growth of tumors in mice, suggesting a potential therapeutic target.

An extensive microRNA-mediated network of RNA-RNA interactions

Genome-wide inference of sponge modulators identified a miR-program mediated post-transcriptional regulatory (mPR) network including ~248,000 interactions.

For decades, scientists have thought that the primary role of messenger RNA (mRNA) is to shuttle information from the DNA to the ribosomes, the sites of protein synthesis. However, new studies now suggest that the mRNA of one gene can control, and be controlled by, the mRNA of other genes via a large pool of microRNA molecules, with dozens to hundreds of genes working together in complex self-regulating sub-networks.

In work published in the journal Cell, Andrea Califano, José Silva, and colleagues analyzed gene expression data in glioblastoma in combination with matched microRNA profiles to uncover a posttranscriptional regulation layer of surprising magnitude, comprising more than 248,000 microRNA (miR)-mediated interactions. These include ∼7,000 genes whose transcripts act as miR “sponges.” When two genes share a set of microRNA regulators, changes in expression of one gene affects the other. If, for instance, one of those genes is highly expressed, the increase in its mRNA molecules will “sponge up” more of the available microRNAs. As a result, fewer microRNA molecules will be available to bind and repress the other gene’s mRNAs, leading to a corresponding increase in expression.

Although such an effect had been previously elucidated, the range and relevance of this kind of interaction had not been characterized.

Gene clusters found using NETBAG analysis of de novo CNV regions observed in autistic individuals.

Gene clusters found using NETBAG analysis of de novo CNV regions observed in autistic individuals. A) The highest scoring cluster obtained using the search procedure with up to one gene per each CNV region. B) The cluster obtained using the search with up to two genes per region.

Identification of complex molecular networks underlying common human phenotypes is a major challenge of modern genetics. A new network-based method developed at the lab of Dennis Vitkup was used to identify a large biological network of genes affected by rare de novo copy number variations (CNVs) in autism. The genes forming the network are primarily related to synapse development, axon targeting, and neuron motility. The identified network is strongly related to genes previously implicated in autism and intellectual disability phenotypes.

These findings are consistent with the hypothesis that significantly stronger functional perturbations are required to trigger the autistic phenotype in females compared to males. Overall, the analysis of de novo variants supports the hypothesis that perturbed synaptogenesis is at the heart of autism.

Systematic characterization of cancer genomes has revealed a staggering number of diverse alterations that differ among individuals, so that their functional importance and physiological impact remains poorly defined. In order to identify which genetic alterations are functional, the lab of Dr. Dana Pe’er has developed a novel Bayesian probabilistic algorithm, CONEXIC, to integrate copy number and gene expression data in order to identify tumor-specific “driver” aberrations, as well as the cellular processes they affect.

In work published in the journal Cell, the new method was applied on data from melanoma patients, identifying a list of 64 putative ‘drivers’ and the core processes affected by them. This list includes many known driver genes (e.g., MITF), which CONEXIC correctly identified and paired with their known targets. This list also includes novel ‘driver’ candidates including Rab27a and TBC1D16, both involved in protein trafficking. ShRNA-mediated silencing of these genes in short-term tumor-derived cultures determined that they are tumor dependencies and validated their computationally predicted role in melanoma (including target identification), suggesting that protein trafficking may play an important role in this malignancy.

Transcriptional Network for Mesenchymal Transformation of Brain Tumors

The mesenchymal signature of high-grade gliomas is controlled by six transcription factors. TFs involved in activation of MGES targets are shown in pink, those involved in repression are in purple.

High-grade gliomas, such as glioblastoma, are incurable partly because the tumor cells are widely disseminated throughout the brain. This capacity for invasive growth has been associated with the expression of genes more commonly transcribed in mesenchymal cells. In work published in the journal Nature, Antonio Iavarone, Andrea Califano, and colleagues have identified a small transcription factor network that is responsible for the mesenchymal behavior of glioma cells.

The authors applied a specific algorithm designed to infer causal transcription factor-target interactions to gene expression profiles from 176 samples of high-grade gliomas. They analyzed the resulting interactome with a new algorithm that enabled them to evaluate the transcription factor network in terms of a previously identified mesenchymal gene expression signature from high-grade gliomas. This identified the 53 transcription factors that are associated with regulating mesenchymal gene expression. Further analyses identified signal transducer and activator of transcription 3 (STAT3) and CAATT/enhancer binding protein-β (CEBPβ) as potential master regulators that control the expression of a substantial proportion of these mesenchymal genes. The authors conclude that systems biology approaches can be used to identify master transcription factors that are involved in malignant transformation, and such approaches could be applied to help dissect the complexity of other tumour phenotypes.